计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2010年
7期
1562-1565
,共4页
知识空间%粒子群算法%分组策略%优化%适应值
知識空間%粒子群算法%分組策略%優化%適應值
지식공간%입자군산법%분조책략%우화%괄응치
knowledge space%particle swarm optimization%grouping strategy%optimization%fitness
为了提高粒子群算法中粒子搜索全局最优解的准确度,确保粒子的收敛性,提出了基于知识空间的分组式粒子群算法(KGPSO).该算法使用K-means算法对粒子群进行分组,利用较小的最大飞行速度(Vmax)加强粒子在组内的局部搜索能力,并将"知识空间"的概念带入到分组中,由知识空间中的粒子来引导群中粒子前往更好的解空间搜索.实验结果表明,KGPSO算法在测试函数的表现整体优于过去学者提出的标准PSO,HPSO、FPSO.
為瞭提高粒子群算法中粒子搜索全跼最優解的準確度,確保粒子的收斂性,提齣瞭基于知識空間的分組式粒子群算法(KGPSO).該算法使用K-means算法對粒子群進行分組,利用較小的最大飛行速度(Vmax)加彊粒子在組內的跼部搜索能力,併將"知識空間"的概唸帶入到分組中,由知識空間中的粒子來引導群中粒子前往更好的解空間搜索.實驗結果錶明,KGPSO算法在測試函數的錶現整體優于過去學者提齣的標準PSO,HPSO、FPSO.
위료제고입자군산법중입자수색전국최우해적준학도,학보입자적수렴성,제출료기우지식공간적분조식입자군산법(KGPSO).해산법사용K-means산법대입자군진행분조,이용교소적최대비행속도(Vmax)가강입자재조내적국부수색능력,병장"지식공간"적개념대입도분조중,유지식공간중적입자래인도군중입자전왕경호적해공간수색.실험결과표명,KGPSO산법재측시함수적표현정체우우과거학자제출적표준PSO,HPSO、FPSO.
To improve the accuracy of the global optimal solution and ensure the convergence of particle, an algorithm of grouping particle swarm optimization based on knowledge space (KGPSO) is presented. Firstly, the initial particles are divided into several groups by K-means algorithm and the smaller Vmax is gotten to enhance searching ability. Then, the concept of "knowledge space" is taken into the particle groups. All particle groups are guided to search by the particles that in knowledge space. Finally, performances of the proposed algorithm are demonstrated by the application and the results shown that KGPSO is effective and gains better performance than SPSO (standard particle swarm optimization), HPSO (hybrid particle swarm optimization) and FPSO (fuzzy adaptive particle swarm optimization).