电子测量与仪器学报
電子測量與儀器學報
전자측량여의기학보
JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT
2010年
1期
85-89
,共5页
曲率%HOUGH变换%平面轮廓%图元识别
麯率%HOUGH變換%平麵輪廓%圖元識彆
곡솔%HOUGH변환%평면륜곽%도원식별
curvature%HOUGH transform%planar contour%primitive recognition
针对检测精度与检测速度两大指标,提出了基于曲率与HOUGH变换的平面轮廓图元识别方法.开发了基于邻域值的轮廓点分类算法,采用曲率阈值法筛选轮廓点、投影高度法判别图元属性及分类轮廓点,分别构建了基于HOUGH变换的直线图元、圆弧图元分割与融合算法.对本文提出的方法与Chung&Tsai方法等4种特征点检测方法的检测精度与检测速度进行了对比实验与分析.采用包含各种类型特征点的仿真平面轮廓对本文提出的方法的特征点检测能力进行了测试.实验结果表明,本文提出的方法图元识别准确、检测速度快、通用性好.
針對檢測精度與檢測速度兩大指標,提齣瞭基于麯率與HOUGH變換的平麵輪廓圖元識彆方法.開髮瞭基于鄰域值的輪廓點分類算法,採用麯率閾值法篩選輪廓點、投影高度法判彆圖元屬性及分類輪廓點,分彆構建瞭基于HOUGH變換的直線圖元、圓弧圖元分割與融閤算法.對本文提齣的方法與Chung&Tsai方法等4種特徵點檢測方法的檢測精度與檢測速度進行瞭對比實驗與分析.採用包含各種類型特徵點的倣真平麵輪廓對本文提齣的方法的特徵點檢測能力進行瞭測試.實驗結果錶明,本文提齣的方法圖元識彆準確、檢測速度快、通用性好.
침대검측정도여검측속도량대지표,제출료기우곡솔여HOUGH변환적평면륜곽도원식별방법.개발료기우린역치적륜곽점분류산법,채용곡솔역치법사선륜곽점、투영고도법판별도원속성급분류륜곽점,분별구건료기우HOUGH변환적직선도원、원호도원분할여융합산법.대본문제출적방법여Chung&Tsai방법등4충특정점검측방법적검측정도여검측속도진행료대비실험여분석.채용포함각충류형특정점적방진평면륜곽대본문제출적방법적특정점검측능력진행료측시.실험결과표명,본문제출적방법도원식별준학、검측속도쾌、통용성호.
According to the two indices of inspection accuracy and inspection speed, a planar contour primitive recognition method based on curvature and HOUGH transform is proposed. A contour point classification algorithm based on neighborhood values is developed, and a curvature threshold method is selected to filter the contour points, and a projection height method is selected to distinguish the property of the primitive and classify the contour points, and the straight line pnmitive and arc primitive segmentation and merging algorithms are constructed respectively by HOUGH transform. The inspection accuracy and inspection speed of the proposed method are compared and analyzed by contrast experiments between the proposed method and four dominant point detection methods such as Chung & Tsai method and so on. The dominant point detection ability of the proposed method is tested by a simulation planar contour which includes all kinds of dominant points. The experimental results indicate that the proposed method can recognize primitives exactly, the inspection speed is fast and the universality is good.