中华肿瘤杂志
中華腫瘤雜誌
중화종류잡지
CHINESE JOURNAL OF ONCOLOGY
2010年
1期
33-36
,共4页
郭静会%王文静%廖萍%张春燕%靳大勇%楼文晖%张顺财
郭靜會%王文靜%廖萍%張春燕%靳大勇%樓文暉%張順財
곽정회%왕문정%료평%장춘연%근대용%루문휘%장순재
胰腺肿瘤%肿瘤标志,生物学%诊断模型%预后%SELDI-TOF-MS
胰腺腫瘤%腫瘤標誌,生物學%診斷模型%預後%SELDI-TOF-MS
이선종류%종류표지,생물학%진단모형%예후%SELDI-TOF-MS
Pancreatic neoplasms%Tumor markers,biological%Diagnosing model%Prognosis%SELDI-TOF-MS
目的 建立胰腺癌血清学诊断模型,探讨评估胰腺癌分期和治疗疗效的生物学标志物.方法 采用强阴离子交换(SAX2)芯片和表面增强激光解吸电离飞行时间质谱仪(SELDI-TOF-MS)技术,测定58例胰腺癌患者和51例正常对照者的血清蛋白质指纹图谱;应用Biomarker Wizard统计软件以及决策树算法、Logistic回归和ROC曲线,建立决策树和二分类回归诊断模型.结果 在质荷比(M/Z)值为2000~30 000范围内,建立10个决策树诊断模型,其预测胰腺癌的正确率为92.9%(13/14),诊断胰腺癌的敏感性为83.3%,特异性为100%.应用Logistic回归联合多种差异蛋白峰诊断胰腺癌的曲线下面积(AUC)为0.976±0.011(P<0.001),敏感性为77.6%~91.4%,特异性为92.2%~100%.联合6个差异蛋白峰诊断胰腺癌Ⅰ与Ⅱ期、Ⅱ与Ⅲ期以及Ⅲ与Ⅳ期的AUC值分别为0.897±0.054、0.978±0.021和0.792±0.107(P<0.05).胰腺癌组中高表达的差异蛋白峰(M/Z 4016)在手术前后有下调趋势(P<0.05).结论 应用SELDI-TOF-MS技术进行胰腺癌血清蛋白质指纹图谱分析,采用统计学方法建立胰腺癌决策树和二分类回归诊断模型,对胰腺癌的诊断和鉴别诊断有一定的价值;筛选出的差异蛋白峰对胰腺癌的预后和疗效评估有一定的应用价值.
目的 建立胰腺癌血清學診斷模型,探討評估胰腺癌分期和治療療效的生物學標誌物.方法 採用彊陰離子交換(SAX2)芯片和錶麵增彊激光解吸電離飛行時間質譜儀(SELDI-TOF-MS)技術,測定58例胰腺癌患者和51例正常對照者的血清蛋白質指紋圖譜;應用Biomarker Wizard統計軟件以及決策樹算法、Logistic迴歸和ROC麯線,建立決策樹和二分類迴歸診斷模型.結果 在質荷比(M/Z)值為2000~30 000範圍內,建立10箇決策樹診斷模型,其預測胰腺癌的正確率為92.9%(13/14),診斷胰腺癌的敏感性為83.3%,特異性為100%.應用Logistic迴歸聯閤多種差異蛋白峰診斷胰腺癌的麯線下麵積(AUC)為0.976±0.011(P<0.001),敏感性為77.6%~91.4%,特異性為92.2%~100%.聯閤6箇差異蛋白峰診斷胰腺癌Ⅰ與Ⅱ期、Ⅱ與Ⅲ期以及Ⅲ與Ⅳ期的AUC值分彆為0.897±0.054、0.978±0.021和0.792±0.107(P<0.05).胰腺癌組中高錶達的差異蛋白峰(M/Z 4016)在手術前後有下調趨勢(P<0.05).結論 應用SELDI-TOF-MS技術進行胰腺癌血清蛋白質指紋圖譜分析,採用統計學方法建立胰腺癌決策樹和二分類迴歸診斷模型,對胰腺癌的診斷和鑒彆診斷有一定的價值;篩選齣的差異蛋白峰對胰腺癌的預後和療效評估有一定的應用價值.
목적 건립이선암혈청학진단모형,탐토평고이선암분기화치료료효적생물학표지물.방법 채용강음리자교환(SAX2)심편화표면증강격광해흡전리비행시간질보의(SELDI-TOF-MS)기술,측정58례이선암환자화51례정상대조자적혈청단백질지문도보;응용Biomarker Wizard통계연건이급결책수산법、Logistic회귀화ROC곡선,건립결책수화이분류회귀진단모형.결과 재질하비(M/Z)치위2000~30 000범위내,건립10개결책수진단모형,기예측이선암적정학솔위92.9%(13/14),진단이선암적민감성위83.3%,특이성위100%.응용Logistic회귀연합다충차이단백봉진단이선암적곡선하면적(AUC)위0.976±0.011(P<0.001),민감성위77.6%~91.4%,특이성위92.2%~100%.연합6개차이단백봉진단이선암Ⅰ여Ⅱ기、Ⅱ여Ⅲ기이급Ⅲ여Ⅳ기적AUC치분별위0.897±0.054、0.978±0.021화0.792±0.107(P<0.05).이선암조중고표체적차이단백봉(M/Z 4016)재수술전후유하조추세(P<0.05).결론 응용SELDI-TOF-MS기술진행이선암혈청단백질지문도보분석,채용통계학방법건립이선암결책수화이분류회귀진단모형,대이선암적진단화감별진단유일정적개치;사선출적차이단백봉대이선암적예후화료효평고유일정적응용개치.
Objective To establish decision tree and logistic regression classification models for diagnosing pancreatic adenocarcinoma (PaCa) and for screening serum biomarkers related to evaluation of different stages and curative effects. Methods Serum samples obtained from subjects with pancreatic adenocarcinoma (n =58) and normal pancreas (n =51) were applied to strong anion exchange chromatography (SAX2) chips for protein profiling by SELDI-TOF-MS to screen multiple serum biomarkers.Biomarker Wizard software and several statistical methods including algorithm of decision tree, logistic regression and ROC curves were used to construct the decision tree or logistic regression classification models. Results Average of 61 mass peaks were detected at the molecular range of 2000-30 000, ten decision trees with the highest cross validation rate were chosen to construct the classification models, which can differentiate PaCa from normal pancreas with a sensitivity of 83.3% and a specificity of 100%. Logistic regression was used to achieve the AUC (0.976 ±0. 011 ,P <0.001) with a sensitivity of 77. 6%-91. 4%and a specificity of 92.2% -100%. Six mass peaks were combined by logistic regression to achieve the AUC 0.897 ±0.054, 0.978 ±0.021 and 0. 792 ± 0. 107 (P < 0. 05 ) in the three groups (patients at stage Ⅰ and Ⅱ , stage 1 and Ⅲ, stage Ⅲ and Ⅳ ). One mass peak (M/Z 4 016) was screened (P < 0. 05)significantly between the preoperative and postoperative PaCa samples and the intensity decreased weeks after operation. Conclusion Decision tree and logistic regression classification models of the mass peaks screened by SELDI-TOF-MS serum profiling can be used to differentiate pancreatic adenocarcinoma from normal pancreas, and is superior to CA 199. The detected mass peaks are helpful for the evaluation of curative effect and prognosis of pancreatic adenocarcinoma.