生态学报
生態學報
생태학보
ACTA ECOLOGICA SINICA
2009年
7期
3747-3758
,共12页
傅民杰%王传宽%王颖%刘实
傅民傑%王傳寬%王穎%劉實
부민걸%왕전관%왕영%류실
森林土壤%氮%净氮矿化%净硝化
森林土壤%氮%淨氮礦化%淨硝化
삼림토양%담%정담광화%정초화
forest soil%nitrogen%net nitrogen mineralization%net nitrification
利用PVC管原位培养连续取样法测定了东北地区4种具有代表性的森林生态系统(硬阔叶林、蒙古栎林、红松林、落叶松林)土壤氮素矿化、硝化的时间动态及氮矿化的空间分布格局.结果表明:4种森林土壤氮素矿化存在明显的时空变异.蒙古栎和红松林土壤在6月份表现出强烈的氮矿化和硝化作用,而硬阔叶林及落叶松林7月份氮素矿化强烈.4种森林生态系统上层土壤的氮净矿(硝)化率显著高于下层土壤.4种林型土壤的硝化过程在氮矿化过程中占有重要地位,其NO-3-N在无机氮中的比例分别为:79.9%~91.1%(硬阔叶林)、50.7%~80.5%(蒙古栎林)、54.1%~92.0%(红松林)、63.7%~86.5%(落叶松林).生态系统构成决定了土壤氮素的矿化能力.阔叶林和针阔混交林生态系统矿化率大于纯针叶林生态系统.硬阔叶林、红松林、蒙古栎林、落叶松林的平均净矿化率分别为:(0.58±0.01) mg · kg-1 · d-1、(0.47±0.19) mg · kg-1 · d-1、(0.39±0.11) mg · kg-1 · d-1和(0.23±0.06) mg · kg-1 · d-1.4种林型氮素矿化作用与地下5 cm温度呈正相关,并受土壤表层 (0~10 cm)水分显著影响.土壤微生物量氮与土壤氮矿化呈显著正相关.
利用PVC管原位培養連續取樣法測定瞭東北地區4種具有代錶性的森林生態繫統(硬闊葉林、矇古櫟林、紅鬆林、落葉鬆林)土壤氮素礦化、硝化的時間動態及氮礦化的空間分佈格跼.結果錶明:4種森林土壤氮素礦化存在明顯的時空變異.矇古櫟和紅鬆林土壤在6月份錶現齣彊烈的氮礦化和硝化作用,而硬闊葉林及落葉鬆林7月份氮素礦化彊烈.4種森林生態繫統上層土壤的氮淨礦(硝)化率顯著高于下層土壤.4種林型土壤的硝化過程在氮礦化過程中佔有重要地位,其NO-3-N在無機氮中的比例分彆為:79.9%~91.1%(硬闊葉林)、50.7%~80.5%(矇古櫟林)、54.1%~92.0%(紅鬆林)、63.7%~86.5%(落葉鬆林).生態繫統構成決定瞭土壤氮素的礦化能力.闊葉林和針闊混交林生態繫統礦化率大于純針葉林生態繫統.硬闊葉林、紅鬆林、矇古櫟林、落葉鬆林的平均淨礦化率分彆為:(0.58±0.01) mg · kg-1 · d-1、(0.47±0.19) mg · kg-1 · d-1、(0.39±0.11) mg · kg-1 · d-1和(0.23±0.06) mg · kg-1 · d-1.4種林型氮素礦化作用與地下5 cm溫度呈正相關,併受土壤錶層 (0~10 cm)水分顯著影響.土壤微生物量氮與土壤氮礦化呈顯著正相關.
이용PVC관원위배양련속취양법측정료동북지구4충구유대표성적삼림생태계통(경활협림、몽고력림、홍송림、락협송림)토양담소광화、초화적시간동태급담광화적공간분포격국.결과표명:4충삼림토양담소광화존재명현적시공변이.몽고력화홍송림토양재6월빈표현출강렬적담광화화초화작용,이경활협림급락협송림7월빈담소광화강렬.4충삼림생태계통상층토양적담정광(초)화솔현저고우하층토양.4충림형토양적초화과정재담광화과정중점유중요지위,기NO-3-N재무궤담중적비례분별위:79.9%~91.1%(경활협림)、50.7%~80.5%(몽고력림)、54.1%~92.0%(홍송림)、63.7%~86.5%(락협송림).생태계통구성결정료토양담소적광화능력.활협림화침활혼교림생태계통광화솔대우순침협림생태계통.경활협림、홍송림、몽고력림、락협송림적평균정광화솔분별위:(0.58±0.01) mg · kg-1 · d-1、(0.47±0.19) mg · kg-1 · d-1、(0.39±0.11) mg · kg-1 · d-1화(0.23±0.06) mg · kg-1 · d-1.4충림형담소광화작용여지하5 cm온도정정상관,병수토양표층 (0~10 cm)수분현저영향.토양미생물량담여토양담광화정현저정상관.
Tempo-spatial variations in soil net nitrogen (N) mineralization and nitrification in four typical temperate forests in northeast China were investigated with a PVC tube sequential coring and in-situ incubation method. The forests were hardwood broadleaf (HB), Quercus mongolica (QM), Pinus koraiensis (PK) and Larix gmelinii (LG) forests. The N mineralization showed significant tempo-spatial variability in the four forests. The highest net N mineralization rates occurred in June for the QM and PK, and in July for the HB and LG. The rates of N mineralization and nitrification at the upper-layer soil were greater than those at the lower-layer. Nitrification was the dominant process in the forests, and the proportion of NO-3-N to the total inorganic N was 79.9%-91.1%, 50.7%-80.5%, 54.1%-92.0% and 63.7%-86.5% for the HB, QM, PK and LG, respectively. The N mineralization capacity differed significantly among the four forests. The mean rates of N mineralization for the HB, QM, PK and LG were (0.58±0.01) mg · kg-1 · d-1, (0.47±0.19) mg · kg-1 · d-1, (0.39±0.11) mg · kg-1 · d-1 and (0.23±0.06) mg · kg-1 · d-1, respectively. The N mineralization was positively correlated to the soil temperature at 5 cm depth for the four forests. This relationship was significantly influenced by the soil moisture at 0-10 cm depth. The N mineralization was also significantly positively correlated to the microbial biomass N.