物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2010年
9期
2557-2562
,共6页
郭培志%韩光亭%王宝燕%赵修松
郭培誌%韓光亭%王寶燕%趙脩鬆
곽배지%한광정%왕보연%조수송
水热合成%Cu7S4纳米管%甲硫氨酸%生物分子
水熱閤成%Cu7S4納米管%甲硫氨痠%生物分子
수열합성%Cu7S4납미관%갑류안산%생물분자
Hydrothermalsynthesis%Cu7S4nanotube%Methionine%Biomolecule
使用生物分子DL-甲硫氨酸辅助水热方法合成Cu7S4纳米管,产物的形貌与晶型可通过改变实验参数进行调控.研究表明,硝酸铜和DL-甲硫氨酸在反应开始时的配位比为1∶2,而且当反应物的摩尔比为1:2和反应温度为200℃时可合成直径为100-600 nm、长度达40-100 μm的多晶Cu7S4纳米管.使用D-或L-甲硫氨酸均能得到类似Cu7S4纳米管.Cu7S4纳米管的禁带宽度为2.88 eV,与Cu7S4的块体材料相比有明显蓝移.基于实验研究结果,讨论了甲硫氨酸分子中的官能团与反应产物之间的联系并提出了Cu7S4纳米管的自牺牲模板法形成机理.
使用生物分子DL-甲硫氨痠輔助水熱方法閤成Cu7S4納米管,產物的形貌與晶型可通過改變實驗參數進行調控.研究錶明,硝痠銅和DL-甲硫氨痠在反應開始時的配位比為1∶2,而且噹反應物的摩爾比為1:2和反應溫度為200℃時可閤成直徑為100-600 nm、長度達40-100 μm的多晶Cu7S4納米管.使用D-或L-甲硫氨痠均能得到類似Cu7S4納米管.Cu7S4納米管的禁帶寬度為2.88 eV,與Cu7S4的塊體材料相比有明顯藍移.基于實驗研究結果,討論瞭甲硫氨痠分子中的官能糰與反應產物之間的聯繫併提齣瞭Cu7S4納米管的自犧牲模闆法形成機理.
사용생물분자DL-갑류안산보조수열방법합성Cu7S4납미관,산물적형모여정형가통과개변실험삼수진행조공.연구표명,초산동화DL-갑류안산재반응개시시적배위비위1∶2,이차당반응물적마이비위1:2화반응온도위200℃시가합성직경위100-600 nm、장도체40-100 μm적다정Cu7S4납미관.사용D-혹L-갑류안산균능득도유사Cu7S4납미관.Cu7S4납미관적금대관도위2.88 eV,여Cu7S4적괴체재료상비유명현람이.기우실험연구결과,토론료갑류안산분자중적관능단여반응산물지간적련계병제출료Cu7S4납미관적자희생모판법형성궤리.
Cu7S4 nanotubes were synthesized using a biomolecule DL-methionine-assisted hydrothermal method.The morphology and phase of the products can be controlled by adjusting the reaction parameters such as synthesis temperature, reaction time and the molar ratio of the reagents. We found that uniform polycrystal Cu7S4 nanotubes with diameters of 100-600 nm and lengths of 40-100 μm can be controllably synthesized at 200 ℃ when the molar ratio of Cu(NO3)2 to DL-methionine in the synthesis system is 1:2. Similar Cu7S4 nanotubes can be obtained from D- or L-methionine systems. The bandgap energy of the Cu7S4 nanotubes was measured to be about 2.88 eV, a remarkable blue shift in comparison with that of bulk Cu7S4 (2.0 eV). We discussed the relationship between the products and the functional groups in the amphiphilic biomolecules. On the basis of our experimental data, we proposed that the Cu7S4 nanotubes were formed versus a self-sacrificing template mechanism.