稀有金属材料与工程
稀有金屬材料與工程
희유금속재료여공정
RARE METAL MATERIALS AND ENGINEERNG
2009年
12期
2075-2079
,共5页
纳米镍%力学性能%晶粒度分布%变形机制%电沉积
納米鎳%力學性能%晶粒度分佈%變形機製%電沉積
납미얼%역학성능%정립도분포%변형궤제%전침적
nanocrystalline Ni%mechanical property%grain size distribution%deformation mechanism%electrodeposition
通过直流与脉冲电沉积分别制备平均晶粒度为20~30 nm,宽晶粒度分布(5~120 nm)的纳米镍.在室温静拉伸应变速率范围内,直流电沉积制备的纳米镍的平均抗拉强度和平均断裂延伸率分别为1176 MPa与10.6%.而由脉冲电沉积技术制备的纳米镍抗拉强度可达1500 MPa之上,最高断裂延伸率可达13.3%.与电沉积获得的普通窄晶粒度分布的纳米镍相比,宽晶粒度分布的纳米镍的塑性要高出100%以上.其原因是大型晶粒内部允许位错的存在,且理论计算表明,晶内位错可通过Frank-Read源机制进行增殖.
通過直流與脈遲電沉積分彆製備平均晶粒度為20~30 nm,寬晶粒度分佈(5~120 nm)的納米鎳.在室溫靜拉伸應變速率範圍內,直流電沉積製備的納米鎳的平均抗拉彊度和平均斷裂延伸率分彆為1176 MPa與10.6%.而由脈遲電沉積技術製備的納米鎳抗拉彊度可達1500 MPa之上,最高斷裂延伸率可達13.3%.與電沉積穫得的普通窄晶粒度分佈的納米鎳相比,寬晶粒度分佈的納米鎳的塑性要高齣100%以上.其原因是大型晶粒內部允許位錯的存在,且理論計算錶明,晶內位錯可通過Frank-Read源機製進行增殖.
통과직류여맥충전침적분별제비평균정립도위20~30 nm,관정립도분포(5~120 nm)적납미얼.재실온정랍신응변속솔범위내,직류전침적제비적납미얼적평균항랍강도화평균단렬연신솔분별위1176 MPa여10.6%.이유맥충전침적기술제비적납미얼항랍강도가체1500 MPa지상,최고단렬연신솔가체13.3%.여전침적획득적보통착정립도분포적납미얼상비,관정립도분포적납미얼적소성요고출100%이상.기원인시대형정립내부윤허위착적존재,차이론계산표명,정내위착가통과Frank-Read원궤제진행증식.
The flawless nanocrystalline (nc) Ni with a broad grain size distribution ranging from 5 to 120 nm and an average grain size of 20-30 nm were prepared by direct current and pulse electrodeposition, respectively. In the region of room-temperature static tensile strain rates, for the nc Ni prepared by direct current electrodeposition, the average ultimate tensile strength and the average elongation to failure are 1176 MPa and 10.6%, respectively. While for the nc Ni prepared by pulse electrodeposition, the ultimate tensile strength exceeds 1500 MPa and the max elongation to failure reaches 13.3%. In contrast to the typical electrodeposited nc Ni with a narrow grain size distribution below 50 nm, the ductility is increased by more than 100% for the present nc Ni samples. This enhancement can be interpreted by the reason that dislocations can exist and multiply in the large grains by the mechanism of Frank-Read source in the plastic deformation process revealed by theoretical calculation.