纺织学报
紡織學報
방직학보
JOURNAL OF TEXTILE RESEARCH
2010年
5期
141-145
,共5页
最小二乘支持向量机%服装%需求量预测%模糊理论%核函数%大批量定制
最小二乘支持嚮量機%服裝%需求量預測%模糊理論%覈函數%大批量定製
최소이승지지향량궤%복장%수구량예측%모호이론%핵함수%대비량정제
least squares support vector machine%apparel%demands forecast%fuzzy theory%Kernel function%mass customization
为提高服装需求预测精度,充分考虑了服装需求量随季节、气候条件、价格、性别等因素的影响而动态变化的情况,运用模糊理论对相关影响因素进行模糊化处理后,再将这些影响因素作为服装需求量预测函数的输入变量;然后建立了以改进的二乘支持向量机(LS-SVM) 方法为主、多方法融合为辅的预测模型,对服装销售量进行动态预测.实际算例验证了这一智能预测模型具有良好的精确性.
為提高服裝需求預測精度,充分攷慮瞭服裝需求量隨季節、氣候條件、價格、性彆等因素的影響而動態變化的情況,運用模糊理論對相關影響因素進行模糊化處理後,再將這些影響因素作為服裝需求量預測函數的輸入變量;然後建立瞭以改進的二乘支持嚮量機(LS-SVM) 方法為主、多方法融閤為輔的預測模型,對服裝銷售量進行動態預測.實際算例驗證瞭這一智能預測模型具有良好的精確性.
위제고복장수구예측정도,충분고필료복장수구량수계절、기후조건、개격、성별등인소적영향이동태변화적정황,운용모호이론대상관영향인소진행모호화처리후,재장저사영향인소작위복장수구량예측함수적수입변량;연후건립료이개진적이승지지향량궤(LS-SVM) 방법위주、다방법융합위보적예측모형,대복장소수량진행동태예측.실제산례험증료저일지능예측모형구유량호적정학성.
For improving forecast accuracy of apparel demand,this paper,having given full its consideration of affecting factors such as season,climate conditions,price,gender etc.developed a forecast model mainly based on least squares support vector machine,including processing the above factors with fuzzy theory and using these factors as input variables.A forecasting model mainly based on improved least square support vector machine (LS-SVM) and other methods was constructed.Dynamic forecast of apparel demand is achieved,and practical applications show that this intelligent forecasting model has high accuracy.