中国图象图形学报A
中國圖象圖形學報A
중국도상도형학보A
JOURNAL OF IMAGE AND GRAPHICS
2009年
11期
2217-2222
,共6页
模糊推理%噪声检测%自适应%去噪
模糊推理%譟聲檢測%自適應%去譟
모호추리%조성검측%자괄응%거조
fuzzy reasoning%noise detection%adaptive%de-noising
为了在去除图像噪声的同时最大程度地保持图像细节,提出了一种基于模糊推理的噪声检测及自适应滤波方法.该方法首先利用图像的局部统计信息(ROAD)和方向Laplacian差分值,同时采用模糊推理的方法对噪声点进行检测;然后对可能的噪声点进行自适应的滤波处理,使非噪声点的原有灰度保持不变,以最大程度地保持图像的真实性;最后针对由图像中噪声分布不均产生的局部噪声密度较高和高的噪声图像而进行的模糊推理噪声检测可能引起的"误判点",设计了一种改进的滤波方案用来对其进行修正.该方案采用迭代思想来重复进行噪声定位和滤波,每次滤波只滤除较大可能的噪声点,以最大限度减小图像的模糊.实验结果表明,该方案对于不同程度的噪声,经过适当地迭代均可取得良好的去噪效果.
為瞭在去除圖像譟聲的同時最大程度地保持圖像細節,提齣瞭一種基于模糊推理的譟聲檢測及自適應濾波方法.該方法首先利用圖像的跼部統計信息(ROAD)和方嚮Laplacian差分值,同時採用模糊推理的方法對譟聲點進行檢測;然後對可能的譟聲點進行自適應的濾波處理,使非譟聲點的原有灰度保持不變,以最大程度地保持圖像的真實性;最後針對由圖像中譟聲分佈不均產生的跼部譟聲密度較高和高的譟聲圖像而進行的模糊推理譟聲檢測可能引起的"誤判點",設計瞭一種改進的濾波方案用來對其進行脩正.該方案採用迭代思想來重複進行譟聲定位和濾波,每次濾波隻濾除較大可能的譟聲點,以最大限度減小圖像的模糊.實驗結果錶明,該方案對于不同程度的譟聲,經過適噹地迭代均可取得良好的去譟效果.
위료재거제도상조성적동시최대정도지보지도상세절,제출료일충기우모호추리적조성검측급자괄응려파방법.해방법수선이용도상적국부통계신식(ROAD)화방향Laplacian차분치,동시채용모호추리적방법대조성점진행검측;연후대가능적조성점진행자괄응적려파처리,사비조성점적원유회도보지불변,이최대정도지보지도상적진실성;최후침대유도상중조성분포불균산생적국부조성밀도교고화고적조성도상이진행적모호추리조성검측가능인기적"오판점",설계료일충개진적려파방안용래대기진행수정.해방안채용질대사상래중복진행조성정위화려파,매차려파지려제교대가능적조성점,이최대한도감소도상적모호.실험결과표명,해방안대우불동정도적조성,경과괄당지질대균가취득량호적거조효과.
In order to preserve image fine details while de-noising, a new noise detection and adaptive filter method, which is based on fuzzy reasoning technique, was proposed. At first, according to the local statistic information ROAD( rank-order absolute differences) and orientational laplacian differences, the possible noises was detected with fuzzy reasoning technique. Then possible noise was filtered with an adaptive method, which can preserve details to a great extent by keeping uncontaminated pixels unchanged. Lastly, some possible error judged noise caused by local high noise intensity and high noise image were corrected with an improved filtering approach, in which relatively possible noise was located and filtered iteratively, each time only the most possible noise was filtered. Experimental results show that with appropriate iterative the proposed method is efficient for different noise intensities.