高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2011年
7期
1656-1662
,共7页
谢天喜%莫娟%彭宗仁%付晓勇
謝天喜%莫娟%彭宗仁%付曉勇
사천희%막연%팽종인%부효용
跳线%间隔棒%电晕%电场%结构优化%有限元法(FEM)%紫外成像(UVI)
跳線%間隔棒%電暈%電場%結構優化%有限元法(FEM)%紫外成像(UVI)
도선%간격봉%전훈%전장%결구우화%유한원법(FEM)%자외성상(UVI)
jumper%spacer%corona%electric field%structure optimization%finite element method (FEM}%ultravioletimager (UVI)
750kV输电线路拉西瓦一官厅段位处西北高海拔地区,其耐张塔中相绕跳转角处的间隔棒线夹上电晕放电严重,对周围产生了可听噪声及无线电干扰的污染。为了对绕跳转角处形式和间隔棒结构进行优化,解决该处电晕放电问题,运用三维有限元法建立了750kV耐张塔模型,计算了绕跳转角处问隔棒的电场分布,结果表明中相绕跳由于转角陡、跳线成形差,对转角处间隔棒屏蔽作用较弱,因而导致该处间隔棒线夹上场强高达3540V/mm。针对该问题,提出了增大绕跳转角、增大间隔棒线夹曲率半径和加装屏蔽环或屏蔽球等优化方案,并进行了计算和比较,分析结果表明在间隔棒线夹上安装屏蔽球较为方便可行,能将间隔棒线夹表面最大场强降低至约2200V/mm,可有效抑制间隔棒的放电现象。该研究可为今后超、特高压线路绕跳形式、防晕间隔棒的设计提供研究经验和思路。
750kV輸電線路拉西瓦一官廳段位處西北高海拔地區,其耐張塔中相繞跳轉角處的間隔棒線夾上電暈放電嚴重,對週圍產生瞭可聽譟聲及無線電榦擾的汙染。為瞭對繞跳轉角處形式和間隔棒結構進行優化,解決該處電暈放電問題,運用三維有限元法建立瞭750kV耐張塔模型,計算瞭繞跳轉角處問隔棒的電場分佈,結果錶明中相繞跳由于轉角陡、跳線成形差,對轉角處間隔棒屏蔽作用較弱,因而導緻該處間隔棒線夾上場彊高達3540V/mm。針對該問題,提齣瞭增大繞跳轉角、增大間隔棒線夾麯率半徑和加裝屏蔽環或屏蔽毬等優化方案,併進行瞭計算和比較,分析結果錶明在間隔棒線夾上安裝屏蔽毬較為方便可行,能將間隔棒線夾錶麵最大場彊降低至約2200V/mm,可有效抑製間隔棒的放電現象。該研究可為今後超、特高壓線路繞跳形式、防暈間隔棒的設計提供研究經驗和思路。
750kV수전선로랍서와일관청단위처서북고해발지구,기내장탑중상요도전각처적간격봉선협상전훈방전엄중,대주위산생료가은조성급무선전간우적오염。위료대요도전각처형식화간격봉결구진행우화,해결해처전훈방전문제,운용삼유유한원법건립료750kV내장탑모형,계산료요도전각처문격봉적전장분포,결과표명중상요도유우전각두、도선성형차,대전각처간격봉병폐작용교약,인이도치해처간격봉선협상장강고체3540V/mm。침대해문제,제출료증대요도전각、증대간격봉선협곡솔반경화가장병폐배혹병폐구등우화방안,병진행료계산화비교,분석결과표명재간격봉선협상안장병폐구교위방편가행,능장간격봉선협표면최대장강강저지약2200V/mm,가유효억제간격봉적방전현상。해연구가위금후초、특고압선로요도형식、방훈간격봉적설계제공연구경험화사로。
To suppress the corona, the electric field intensity on the jumper and spacers should be reduced by optimizing structures. Consequently, we constructed a three-dimensional calculation model of the strain tower to compute the electric field distributions of jumpers and spacers, and proposed and compared a variety of optimization schemes, such as increasing the angle of the jumpers, increasing the clamps of the spacers, and installing a grading ring or grading spheres on the spacers. The results demonstrate that installing grading spheres on the spacers is the most reasonable and feasible scheme, which can reduce the maximum electric field intensity from 3540 V/ram to 2200 V/ mm on the surfaces of the spacers.