东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2009年
4期
501-505
,共5页
气体静压轴承%压力场分布%雷诺方程%有限差分法%变步长
氣體靜壓軸承%壓力場分佈%雷諾方程%有限差分法%變步長
기체정압축승%압력장분포%뢰낙방정%유한차분법%변보장
aerostatic bearing%pressure distribution%Reynolds equation%finite difference method%variable step size
针对传统的静压气体轴承压力分布算法效率较低或收敛性较差等问题, 提出了一类改进的有限差分计算方法. 以小孔节流式的径向静压气体轴承的压力分布为对象, 采用有限差分法求解非线性雷诺气体润滑方程; 根据流量平衡原理, 提出了一种新型变步长逐步逼近迭代算法, 用于修正迭代过程中的供气口出口压力, 提高算法的效率和收敛性; 基于Matlab工具, 开发了一套通用的径向静压气体轴承的压力场分布计算软件. 算例结果表明: 所提出的改进有限差分法计算效率高, 稳定性好, 收敛快; 对于小间隙(小于2 μm)气膜, 此方法仍然有效并快速收敛.
針對傳統的靜壓氣體軸承壓力分佈算法效率較低或收斂性較差等問題, 提齣瞭一類改進的有限差分計算方法. 以小孔節流式的徑嚮靜壓氣體軸承的壓力分佈為對象, 採用有限差分法求解非線性雷諾氣體潤滑方程; 根據流量平衡原理, 提齣瞭一種新型變步長逐步逼近迭代算法, 用于脩正迭代過程中的供氣口齣口壓力, 提高算法的效率和收斂性; 基于Matlab工具, 開髮瞭一套通用的徑嚮靜壓氣體軸承的壓力場分佈計算軟件. 算例結果錶明: 所提齣的改進有限差分法計算效率高, 穩定性好, 收斂快; 對于小間隙(小于2 μm)氣膜, 此方法仍然有效併快速收斂.
침대전통적정압기체축승압력분포산법효솔교저혹수렴성교차등문제, 제출료일류개진적유한차분계산방법. 이소공절류식적경향정압기체축승적압력분포위대상, 채용유한차분법구해비선성뢰낙기체윤활방정; 근거류량평형원리, 제출료일충신형변보장축보핍근질대산법, 용우수정질대과정중적공기구출구압력, 제고산법적효솔화수렴성; 기우Matlab공구, 개발료일투통용적경향정압기체축승적압력장분포계산연건. 산례결과표명: 소제출적개진유한차분법계산효솔고, 은정성호, 수렴쾌; 대우소간극(소우2 μm)기막, 차방법잉연유효병쾌속수렴.
An improved finite difference method(FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 μm)are considered, the improved calculation method still yields a result and converges fast.