催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2008年
11期
1138-1144
,共7页
张强%赵梦强%黄佳琦%骞伟中%魏飞
張彊%趙夢彊%黃佳琦%鶱偉中%魏飛
장강%조몽강%황가기%건위중%위비
碳纳米管%化学气相沉积%铁%氧化镁%负载型催化剂%微结构%拉曼光谱
碳納米管%化學氣相沉積%鐵%氧化鎂%負載型催化劑%微結構%拉曼光譜
탄납미관%화학기상침적%철%양화미%부재형최화제%미결구%랍만광보
carbon nanotube%chemical vapor deposition%iron%magnesia%supported catalyst%mirostructure%Raman spectroscopy
通过浸渍及水热处理获得MgO负载的Fe基催化剂,并将其用于化学气相沉积过程裂解甲烷获得碳纳米管. 结果表明,单/双/多壁碳纳米管可选择性地生长在Fe负载量不同的Fe/MgO催化剂上. 当Fe负载量仅为0.5%时,铁原子在载体表面烧结为0.8~1.2 nm的铁颗粒,碳在这种小颗粒上以表面扩散为主,导致单壁碳纳米管形成,并且单壁碳纳米管的选择性高达90%. 当Fe负载量提高到3%时,铁原子聚集成约2.0 nm的颗粒,在化学气相沉积中生长碳纳米管时,碳在Fe催化剂颗粒中的体相扩散的贡献增大,在表相扩散和体相扩散的共同作用下,双壁碳纳米管的选择性显著增高. 当进一步增加Fe负载量时,铁原子烧结形成1~8 nm的颗粒,经过化学气相沉积,在催化剂上生长了单、双、多壁碳纳米管. 随着Fe在MgO载体上负载量的增加,管径、管壁数以及半导体管的含量都增加. 本研究提供了一种适合大批量选择性生长单/双/多壁碳纳米管的方法.
通過浸漬及水熱處理穫得MgO負載的Fe基催化劑,併將其用于化學氣相沉積過程裂解甲烷穫得碳納米管. 結果錶明,單/雙/多壁碳納米管可選擇性地生長在Fe負載量不同的Fe/MgO催化劑上. 噹Fe負載量僅為0.5%時,鐵原子在載體錶麵燒結為0.8~1.2 nm的鐵顆粒,碳在這種小顆粒上以錶麵擴散為主,導緻單壁碳納米管形成,併且單壁碳納米管的選擇性高達90%. 噹Fe負載量提高到3%時,鐵原子聚集成約2.0 nm的顆粒,在化學氣相沉積中生長碳納米管時,碳在Fe催化劑顆粒中的體相擴散的貢獻增大,在錶相擴散和體相擴散的共同作用下,雙壁碳納米管的選擇性顯著增高. 噹進一步增加Fe負載量時,鐵原子燒結形成1~8 nm的顆粒,經過化學氣相沉積,在催化劑上生長瞭單、雙、多壁碳納米管. 隨著Fe在MgO載體上負載量的增加,管徑、管壁數以及半導體管的含量都增加. 本研究提供瞭一種適閤大批量選擇性生長單/雙/多壁碳納米管的方法.
통과침지급수열처리획득MgO부재적Fe기최화제,병장기용우화학기상침적과정렬해갑완획득탄납미관. 결과표명,단/쌍/다벽탄납미관가선택성지생장재Fe부재량불동적Fe/MgO최화제상. 당Fe부재량부위0.5%시,철원자재재체표면소결위0.8~1.2 nm적철과립,탄재저충소과립상이표면확산위주,도치단벽탄납미관형성,병차단벽탄납미관적선택성고체90%. 당Fe부재량제고도3%시,철원자취집성약2.0 nm적과립,재화학기상침적중생장탄납미관시,탄재Fe최화제과립중적체상확산적공헌증대,재표상확산화체상확산적공동작용하,쌍벽탄납미관적선택성현저증고. 당진일보증가Fe부재량시,철원자소결형성1~8 nm적과립,경과화학기상침적,재최화제상생장료단、쌍、다벽탄납미관. 수착Fe재MgO재체상부재량적증가,관경、관벽수이급반도체관적함량도증가. 본연구제공료일충괄합대비량선택성생장단/쌍/다벽탄납미관적방법.
By simple impregnation and hydrothermal treatment, MgO supported iron catalysts were obtained that were used for carbon nanotube (CNT) growth from chemical vapor deposition with methane as the carbon source. Single/double/multi-walled CNTs (S/D/MWCNTs) were selectively synthesized on the Fe/MgO catalyst with different iron loadings. When the iron loading was low (0.5%), the iron atom distributed on the MgO support was sintered to iron nanoparticles with a size of 0.8-1.2 nm under the growth conditions. This catalyst promoted the formation of SWCNTs, which was attributed to the surface diffusion of carbon atoms on it. The selectivity for SWCNTs in the as-grown product from the 0.5%Fe/MgO catalyst was 90%, and the carbon mass yield was 19 times that of the active phase. When the iron loading was increased to 3%, larger iron catalyst particles of about 2.0 nm were formed. On this catalyst, there was more bulk diffusion of carbon, and DWCNTs became the main products due to the combination of both surface and bulk diffusion. With the iron loading was further increasing, iron particles from 1 to 8 nm were formed, which promoted the growth of MWCNTs together with S/DWCNTs. With increasing iron amount on the porous MgO support, the diameter, wall number, and proportion of semiconducting CNTs also increased. This provides a controllable way to selectively grow S/D/MWCNTs on a large scale in a fluidized bed to meet critical needs for CNTs in applications.