北京交通大学学报
北京交通大學學報
북경교통대학학보
JOURNAL OF NORTHERN JIAOTONG UNIVERSITY
2009年
6期
20-22
,共3页
最大亏格%上可嵌入%Betti亏数%2-胞腔嵌入
最大虧格%上可嵌入%Betti虧數%2-胞腔嵌入
최대우격%상가감입%Betti우수%2-포강감입
maximum genus%up-embeddable%Betti deficiency number%2-cell embedding
图G是3-边连通的且G的奇度点的数目为k.若k小于等于4,则G是上可嵌入的; 若k大于等于6,则ξ(G)小于等于k/2减去1.而且当k不小于6时,存在无限多个3边连通图G使得ξ(G)等于k/2减去1.
圖G是3-邊連通的且G的奇度點的數目為k.若k小于等于4,則G是上可嵌入的; 若k大于等于6,則ξ(G)小于等于k/2減去1.而且噹k不小于6時,存在無限多箇3邊連通圖G使得ξ(G)等于k/2減去1.
도G시3-변련통적차G적기도점적수목위k.약k소우등우4,칙G시상가감입적; 약k대우등우6,칙ξ(G)소우등우k/2감거1.이차당k불소우6시,존재무한다개3변련통도G사득ξ(G)등우k/2감거1.
For a 3-edge connected graph G, the number of vertices with odd degree in G is k. If k less than or egual to 4, then G is up-embeddable; if k not less than 6, then ξ(G) is less than or equal to k/2 minus 1. Furthermore, when k not less than 6,there are infinite number of 3-edge connected simple graphs with ξ(G) equal to k/2 minus 1.