计算机辅助设计与图形学学报
計算機輔助設計與圖形學學報
계산궤보조설계여도형학학보
JOURNAL OF COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS
2010年
1期
60-65
,共6页
刘濛%吴成东%王力%楚好
劉濛%吳成東%王力%楚好
류몽%오성동%왕력%초호
随机游走%Kalman滤波器%标记节点%跟踪%交通
隨機遊走%Kalman濾波器%標記節點%跟蹤%交通
수궤유주%Kalman려파기%표기절점%근종%교통
random walk%Kalman filter%mark point%tracking%traffic
将交互式分割算法与Kalman滤波器结合,提出基于Kalman滤波器的随机游走算法,并将其用于解决交通视频监控中的阴影与遮挡问题.首先利用Kalman滤波器的预测信息对随机游走的计算区域进行精简,并提取标记节点用于分割阴影和遮挡目标;然后利用随机游走的分割结果为Kalman滤波器提供精确的观测信息,以更新滤波器参数.同时,使用基于车底阴影的随机游走算法对目标进行初始分割,以获取Kalman滤波器需要的初始状态向量.实验结果证明,文中算法能够解决运动目标阴影与遮挡问题,并且目标分割平均正确率大于94%,算法满足实时性要求.
將交互式分割算法與Kalman濾波器結閤,提齣基于Kalman濾波器的隨機遊走算法,併將其用于解決交通視頻鑑控中的陰影與遮擋問題.首先利用Kalman濾波器的預測信息對隨機遊走的計算區域進行精簡,併提取標記節點用于分割陰影和遮擋目標;然後利用隨機遊走的分割結果為Kalman濾波器提供精確的觀測信息,以更新濾波器參數.同時,使用基于車底陰影的隨機遊走算法對目標進行初始分割,以穫取Kalman濾波器需要的初始狀態嚮量.實驗結果證明,文中算法能夠解決運動目標陰影與遮擋問題,併且目標分割平均正確率大于94%,算法滿足實時性要求.
장교호식분할산법여Kalman려파기결합,제출기우Kalman려파기적수궤유주산법,병장기용우해결교통시빈감공중적음영여차당문제.수선이용Kalman려파기적예측신식대수궤유주적계산구역진행정간,병제취표기절점용우분할음영화차당목표;연후이용수궤유주적분할결과위Kalman려파기제공정학적관측신식,이경신려파기삼수.동시,사용기우차저음영적수궤유주산법대목표진행초시분할,이획취Kalman려파기수요적초시상태향량.실험결과증명,문중산법능구해결운동목표음영여차당문제,병차목표분할평균정학솔대우94%,산법만족실시성요구.
An image segmentation algorithm which combines Kalman filter with random walk algorithm is proposed for resolving the problem of shadow and occlusion in traffic video monitoring. Firstly, the predicted information of Kalman filter is used to reduce the working region of the random walk, in which region several mask points are extracted for the segmentation of the shadow and occluded objects. Secondly, the segmentation results of the random walk provide accurate observation information to update the parameters of the Kalman filter. At the same time, a random walk algorithm based on car bottom shadow is proposed to perform initial target segmentation, which is used to obtain the initial state vector of the Kalman filter. Experimental results show that the proposed algorithm can solve the shadow and occlusion problem. And the average accuracy rate of moving vehicle segmentation is more than 94%. Furthermore, the proposed algorithm has real-time performance.