计算物理
計算物理
계산물리
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2010年
2期
309-316
,共8页
Painlevé分析%B(a)eklund变换%孤子聚变%非线性弦振动方程
Painlevé分析%B(a)eklund變換%孤子聚變%非線性絃振動方程
Painlevé분석%B(a)eklund변환%고자취변%비선성현진동방정
Painlevé property%B(a)cklund transformation%soliton fusion%nonlinear vibrating string equation
借助于计算机符号计算系统Maple,用Weiss,Tabor和Carnevale等人提出的WTC方法首次验证非线性弦振动方程具有Painlevé性质,并得到非线性弦振动方程的B(a)tcklund变换,用Hirota直接方法分析非线性弦振动方程孤子解的聚变现象.
藉助于計算機符號計算繫統Maple,用Weiss,Tabor和Carnevale等人提齣的WTC方法首次驗證非線性絃振動方程具有Painlevé性質,併得到非線性絃振動方程的B(a)tcklund變換,用Hirota直接方法分析非線性絃振動方程孤子解的聚變現象.
차조우계산궤부호계산계통Maple,용Weiss,Tabor화Carnevale등인제출적WTC방법수차험증비선성현진동방정구유Painlevé성질,병득도비선성현진동방정적B(a)tcklund변환,용Hirota직접방법분석비선성현진동방정고자해적취변현상.
With WTC algorithm developed by Weiss, Tabor and Carnevale, we concluded that a nonlinear vibrating string equation has Painlevé property. B(a)cklund transformation is obtained. Furthermore, soliton fusion is analyzed by means of Hirota's direct method and B(a)cklund transformation.