工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2008年
1期
138-142
,共5页
粘连度%最大网络%非线性整数规划
粘連度%最大網絡%非線性整數規劃
점련도%최대망락%비선성정수규화
the tenacity%maximum network%nonlinear integer programming
图G的粘连度定义为T(G)=min{|X|+m(G-X)/ω(G-X):X(∪)V(G)且ω(G-X)>1}.本文我们在考虑图的粘连度的界的基础上指出了其取值范围,随后讨论了顶点数和粘连度给定的最大图的边数,并给出了该图的构造方法.
圖G的粘連度定義為T(G)=min{|X|+m(G-X)/ω(G-X):X(∪)V(G)且ω(G-X)>1}.本文我們在攷慮圖的粘連度的界的基礎上指齣瞭其取值範圍,隨後討論瞭頂點數和粘連度給定的最大圖的邊數,併給齣瞭該圖的構造方法.
도G적점련도정의위T(G)=min{|X|+m(G-X)/ω(G-X):X(∪)V(G)차ω(G-X)>1}.본문아문재고필도적점련도적계적기출상지출료기취치범위,수후토론료정점수화점련도급정적최대도적변수,병급출료해도적구조방법.
The tenacity of an incomplete connected graph G is defined as T(G) = min{|X|+m(G-X)/ω(G-X):X(∪)V(G)ω(G-X)>1}. In this paper, we obtain the maximum network with a prescribed order and tenacity and give a method for constructing such networks.