计算机仿真
計算機倣真
계산궤방진
COMPUTER SIMULATION
2010年
1期
281-284,304
,共5页
径向基概率神经网络%交通标志%模糊一仿射联合不变矩
徑嚮基概率神經網絡%交通標誌%模糊一倣射聯閤不變矩
경향기개솔신경망락%교통표지%모호일방사연합불변구
Radial basis probabilistic neural networks (RBPNN)%Traffic sign%Combined blur-affine invariants (CBAIs)
为了识别退化的交通标志图像,采用模糊-仿射联合不变矩直接提取图像的特征,并针对各阶模糊-仿射联合不变矩数量级差异较大问题,提出一种数量级标准化算法,避免了需要较大计算量的图像复原处理过程.同时在深入研究径向基概率神经网络的基础上,采用全局K-均值算法优化其网络结构,并将其用于交通标志图像的分类识别.仿真结果表明,模糊-仿射联合不变矩是一种有效的处理退化交通标志图像的方法,所设计的径向基概率神经网络分类器不仅具有精简的结构而且有较好分类精度和推广性能.
為瞭識彆退化的交通標誌圖像,採用模糊-倣射聯閤不變矩直接提取圖像的特徵,併針對各階模糊-倣射聯閤不變矩數量級差異較大問題,提齣一種數量級標準化算法,避免瞭需要較大計算量的圖像複原處理過程.同時在深入研究徑嚮基概率神經網絡的基礎上,採用全跼K-均值算法優化其網絡結構,併將其用于交通標誌圖像的分類識彆.倣真結果錶明,模糊-倣射聯閤不變矩是一種有效的處理退化交通標誌圖像的方法,所設計的徑嚮基概率神經網絡分類器不僅具有精簡的結構而且有較好分類精度和推廣性能.
위료식별퇴화적교통표지도상,채용모호-방사연합불변구직접제취도상적특정,병침대각계모호-방사연합불변구수량급차이교대문제,제출일충수량급표준화산법,피면료수요교대계산량적도상복원처리과정.동시재심입연구경향기개솔신경망락적기출상,채용전국K-균치산법우화기망락결구,병장기용우교통표지도상적분류식별.방진결과표명,모호-방사연합불변구시일충유효적처리퇴화교통표지도상적방법,소설계적경향기개솔신경망락분류기불부구유정간적결구이차유교호분류정도화추엄성능.
For the recognition of degraded traffic sign symbols, the combined blur-affine invariants (CBAIs) are adopted to extract the features of traffic sign symbols without any restorations which usually need a great amount of computation. A new magnitude normalization method is proposed for the great differences of magnitude of combined blur-affine invariants. By deeply discussing the radial basis probabilistic neural network (RBPNN) , a novel struc-ture optimization algorithm for RBPNN is proposed using global K-means algorithm, and the classifier was applied to the classification of degraded traffic signs. The simulation results indicate that CBAIs are efficient for the feature ex-traction of degraded images, and the designed network is not only parsimonious but also has competitive generalization performance.