光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2010年
5期
47-51
,共5页
刘金颂%原思聪%江祥奎%段志善
劉金頌%原思聰%江祥奎%段誌善
류금송%원사총%강상규%단지선
粒子群优化算法%LSSVM回归%摄像机标定%非线性标定
粒子群優化算法%LSSVM迴歸%攝像機標定%非線性標定
입자군우화산법%LSSVM회귀%섭상궤표정%비선성표정
PSO algorithm%LSSVM regression%camera calibration%non-linear calibration
针对摄像机非线性显式标定时很难精确地建立其复杂的数学模型,本文提出了基于粒子群优化算法(PSO)和最小二乘支持向量机(LSSVM)回归的摄像机非线性隐式标定方法.该方法采用最小二乘回归机精确逼近图像坐标与世界坐标之间复杂的非线性成像关系;利用PSO算法搜索LSSVM回归模型的最优参数,提高LSSVM回归的收敛速度和泛化能力.通过运用标准BP神经网络、遗传算法、LSSVM及粒子群优化的LSSVM回归方法对圆阵列图案标定模板进行标定,实验结果表明:基于PSO和LSSVM回归的标定方法具有标定精度高、收敛速度快、泛化能力强等优点.
針對攝像機非線性顯式標定時很難精確地建立其複雜的數學模型,本文提齣瞭基于粒子群優化算法(PSO)和最小二乘支持嚮量機(LSSVM)迴歸的攝像機非線性隱式標定方法.該方法採用最小二乘迴歸機精確逼近圖像坐標與世界坐標之間複雜的非線性成像關繫;利用PSO算法搜索LSSVM迴歸模型的最優參數,提高LSSVM迴歸的收斂速度和汎化能力.通過運用標準BP神經網絡、遺傳算法、LSSVM及粒子群優化的LSSVM迴歸方法對圓陣列圖案標定模闆進行標定,實驗結果錶明:基于PSO和LSSVM迴歸的標定方法具有標定精度高、收斂速度快、汎化能力彊等優點.
침대섭상궤비선성현식표정시흔난정학지건립기복잡적수학모형,본문제출료기우입자군우화산법(PSO)화최소이승지지향량궤(LSSVM)회귀적섭상궤비선성은식표정방법.해방법채용최소이승회귀궤정학핍근도상좌표여세계좌표지간복잡적비선성성상관계;이용PSO산법수색LSSVM회귀모형적최우삼수,제고LSSVM회귀적수렴속도화범화능력.통과운용표준BP신경망락、유전산법、LSSVM급입자군우화적LSSVM회귀방법대원진렬도안표정모판진행표정,실험결과표명:기우PSO화LSSVM회귀적표정방법구유표정정도고、수렴속도쾌、범화능력강등우점.
Aiming at the difficulty of establishing accurate mathematical model of camera in explicit non-linearcalibration,a new implicit non-1inear camera calibration method based on Particle Swarm Optimization(PSO)and Least Square Support Vector Machine(LSSVM)regression was proposed.A least square support vector regression machine wasbuilt to exactly approximate to the non-linear imaging relationship between image points and corresponding 3D worldcoordinates.And PSO algorithm was used to search the optimum parameters of the LSSVM regression model to improve the convergence speed and generalization ability.The calibration results of circular template from standard BP neural network,genetic algorithm,LSSVM and particle swarm optimized LSSVM regression,were compared.The comparisonanalysis indicates that the proposed LSSVM regression method based on PSO has advantages such as higher accuracy, faster convergence speed and better generalization ability.