物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2012年
8期
1971-1977
,共7页
赵鹏君%吴荣%侯娟%常爱民%关芳%张博
趙鵬君%吳榮%侯娟%常愛民%關芳%張博
조붕군%오영%후연%상애민%관방%장박
可见光催化%二氧化钛%铜%一步水热法%复合纳米管
可見光催化%二氧化鈦%銅%一步水熱法%複閤納米管
가견광최화%이양화태%동%일보수열법%복합납미관
Visible-light photocataiysis%TiO2%Cu%One step hydrothermal method%Composite nanotube
采用一步水热法合成了Cu纳米粒子负载二氧化钛纳米管材料.利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、能谱仪(EDS)等对材料的相组成、形貌以及形成过程进行了研究.制得的Cu-TiO2复合纳米材料长度约为100 nm,直径10-15 nm,其上负载的Cu纳米粒子尺寸约为5 nm.BET比表面积测试表明实验制备的Cu-TiO2复合纳米管的比表面积为154.67 m2·g-1.通过调节水热反应时间和钛前驱体种类,研究了该复合纳米管材料的形成机制.结果表明:非晶态的钛源对于成功一步合成Cu-TiO2复合纳米管至关重要.同时,实验中观察到铜纳米粒子的尺寸随水热反应时间延长而减小(反奥氏陈化过程),这一现象有助于纳米粒子的可控合成.紫外-可见吸收光谱表明该复合纳米管在350-800 nm范围内有较强的吸收,并在550-600 nm范围观察到Cu的表面等离子激元吸收带.Cu-TiO2界面处形成的肖特基势垒有助于加快光生载流子的输运,提高光生电子-空穴对的分离效率.光催化实验表明Cu-TiO2复合纳米管在可见光下具有较高的催化活性.
採用一步水熱法閤成瞭Cu納米粒子負載二氧化鈦納米管材料.利用透射電子顯微鏡(TEM)、X射線衍射儀(XRD)、能譜儀(EDS)等對材料的相組成、形貌以及形成過程進行瞭研究.製得的Cu-TiO2複閤納米材料長度約為100 nm,直徑10-15 nm,其上負載的Cu納米粒子呎吋約為5 nm.BET比錶麵積測試錶明實驗製備的Cu-TiO2複閤納米管的比錶麵積為154.67 m2·g-1.通過調節水熱反應時間和鈦前驅體種類,研究瞭該複閤納米管材料的形成機製.結果錶明:非晶態的鈦源對于成功一步閤成Cu-TiO2複閤納米管至關重要.同時,實驗中觀察到銅納米粒子的呎吋隨水熱反應時間延長而減小(反奧氏陳化過程),這一現象有助于納米粒子的可控閤成.紫外-可見吸收光譜錶明該複閤納米管在350-800 nm範圍內有較彊的吸收,併在550-600 nm範圍觀察到Cu的錶麵等離子激元吸收帶.Cu-TiO2界麵處形成的肖特基勢壘有助于加快光生載流子的輸運,提高光生電子-空穴對的分離效率.光催化實驗錶明Cu-TiO2複閤納米管在可見光下具有較高的催化活性.
채용일보수열법합성료Cu납미입자부재이양화태납미관재료.이용투사전자현미경(TEM)、X사선연사의(XRD)、능보의(EDS)등대재료적상조성、형모이급형성과정진행료연구.제득적Cu-TiO2복합납미재료장도약위100 nm,직경10-15 nm,기상부재적Cu납미입자척촌약위5 nm.BET비표면적측시표명실험제비적Cu-TiO2복합납미관적비표면적위154.67 m2·g-1.통과조절수열반응시간화태전구체충류,연구료해복합납미관재료적형성궤제.결과표명:비정태적태원대우성공일보합성Cu-TiO2복합납미관지관중요.동시,실험중관찰도동납미입자적척촌수수열반응시간연장이감소(반오씨진화과정),저일현상유조우납미입자적가공합성.자외-가견흡수광보표명해복합납미관재350-800 nm범위내유교강적흡수,병재550-600 nm범위관찰도Cu적표면등리자격원흡수대.Cu-TiO2계면처형성적초특기세루유조우가쾌광생재류자적수운,제고광생전자-공혈대적분리효솔.광최화실험표명Cu-TiO2복합납미관재가견광하구유교고적최화활성.
One dimensional titanate nanotubes modified with copper nanospheres were synthesized through a facile one-step hydrothermal process.Transmission electron microscope (TEM),X-ray diffraction (XRD),and energy dispersive spectrometry (EDS) were used to monitor the changes in the morphology and phases during the hydrothermal process.The diameter of the Cu-TiO2 composite nanotubes was 10-15 nm and their lengths were ca 100 nm,the dimension of the covered Cu nanoparticles was about 5 nm.Brunauer-Emmett-Teller (BET) tests revealed the specific surface area of the Cu-TiO2 composite nanotubes to be 154.67 m2·g-1.The formation process and mechanism of the composite nanotubes were surveyed by adjusting the hydrothermal duration and titanium precursor.The results revealed that an amorphous titanium precursor is essential for the successful formation of this unique topography and phase composition.Anti-Ostwald ripening,a decrease in the dimensions of the copper nanospheres with hydrothermal time,was observed in the TEM images,which is of benefit to helps keep the particles on the nanoscale.The UV-Vis spectrum of the as-prepared materiel exhibits a strong absorption at 350-800 nm in the visible band compared with commercial TiO2 nanopowders.The plasmonic absorption of metallic copper particles between 550 and 600 nm is seen in the UV-Vis spectrum.Schottky barriers between copper-TiO2 interfaces make this kind of material a potential agent in speeding up electron transport rates and slowing recombination rates.Photocatalytic experiments demonstrated this unique Cu-TiO2 composite nanotube material has a high photocatalytic activity under visible-light irradiation.