应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2009年
4期
721-729
,共9页
Clifford代数%鞅%均方变量%b_p~+-权
Clifford代數%鞅%均方變量%b_p~+-權
Clifford대수%앙%균방변량%b_p~+-권
Universal Clifford algebra%Martingale%Quadratic variation%b_p~+-weighted
如果C_(l,S)是一个Clifford代数,v是一个非负测度,ψ是一个C_(l,S)-值可测函数,那么d_μ=ψdv是一个C_(l,S)-值测度.在这篇论文中将证明如果ψ满足某些b_p~+-权条件那么关于测度d_μ的Clifford-值鞅的一些不等式成立,且应用这些不等式在权ψ∈b_∞~+∩a_1时获得了一些关于Clifford-值鞅的权对偶空间.
如果C_(l,S)是一箇Clifford代數,v是一箇非負測度,ψ是一箇C_(l,S)-值可測函數,那麽d_μ=ψdv是一箇C_(l,S)-值測度.在這篇論文中將證明如果ψ滿足某些b_p~+-權條件那麽關于測度d_μ的Clifford-值鞅的一些不等式成立,且應用這些不等式在權ψ∈b_∞~+∩a_1時穫得瞭一些關于Clifford-值鞅的權對偶空間.
여과C_(l,S)시일개Clifford대수,v시일개비부측도,ψ시일개C_(l,S)-치가측함수,나요d_μ=ψdv시일개C_(l,S)-치측도.재저편논문중장증명여과ψ만족모사b_p~+-권조건나요관우측도d_μ적Clifford-치앙적일사불등식성립,차응용저사불등식재권ψ∈b_∞~+∩a_1시획득료일사관우Clifford-치앙적권대우공간.
If C_(l,S) is a universal Clifford algebra,v is a non-negative measure and ψ is a bounded C_(l,S)-valued measurable function,then d_μ=ψdv is a C_(l,S)-valued measure.We prove that if ψ satisfies some b_p~+-weighted conditions then some weighted inequalities for universal Clifford-valued martingales with respect to the measure d_μ hold.Using these inequalities we obtain some weighted dual spaces for universal Clifford martingales if the weighted ψ∈b_∞~+∩a_1.