数学杂志
數學雜誌
수학잡지
JOURNAL OF MATHEMATICS
2010年
4期
603-612
,共10页
孤立波解%扭结和反扭结波解%周期波解%K(n,2n,-n)方程
孤立波解%扭結和反扭結波解%週期波解%K(n,2n,-n)方程
고립파해%뉴결화반뉴결파해%주기파해%K(n,2n,-n)방정
solitary wave solution%kink and anti-kink wave solution%periodic wave solution%the K (n,2n,-n) equations
本文研究了K(n,2n,-n)方程行波解与参数a,b,c,g,n等的关系.利用动力系统分支理论,得到了孤立波、扭结和反扭结波解,以及不可数无穷多光滑周期波解的存在性.本文推广了文献[1]中的结果.
本文研究瞭K(n,2n,-n)方程行波解與參數a,b,c,g,n等的關繫.利用動力繫統分支理論,得到瞭孤立波、扭結和反扭結波解,以及不可數無窮多光滑週期波解的存在性.本文推廣瞭文獻[1]中的結果.
본문연구료K(n,2n,-n)방정행파해여삼수a,b,c,g,n등적관계.이용동력계통분지이론,득도료고립파、뉴결화반뉴결파해,이급불가수무궁다광활주기파해적존재성.본문추엄료문헌[1]중적결과.
In this article, the relationship between travelling wave solution of the K(n, 2n,-n) equations and parameters a, b, c,g, n is studied. By using the bifurcation theory of dynamical systems, the existence of solitary wave solutions, kink and anti-kink wave solutions and uncountable infinitely many smooth periodic wave solutions is obtained. The result in [1] is extended.