压电与声光
壓電與聲光
압전여성광
PIEZOELECTRICS & ACOUSTOOPTICS
2011年
1期
38-40
,共3页
光纤陀螺%四极对称法%温度梯度%修正系数
光纖陀螺%四極對稱法%溫度梯度%脩正繫數
광섬타라%사겁대칭법%온도제도%수정계수
FOG%quadrupole winding%temperature gradients%correction factor
理论上,采用四极对称法绕制的光纤线圈能很好抑制温度梯度对光纤陀螺的影响,实际上,由于结构加工不理想或石英缠绕引起自身的机械形变,使线圈内外的温度变化,从而导致陀螺输出速率误差.该文分析并给出了光纤陀螺输出速率误差与线圈内外温度差或温度梯度间的关系,提出了一种补偿光纤陀螺因温度变化而导致输出速率漂移误差的方法,尽管光纤陀螺因温度变化所导致的温度漂移不可避免,我们通过测量获取陀螺内部的温度梯度变化并计算出修正系数来对光纤陀螺的输出进行补偿修正,这种方法适合高精度陀螺温度变化较小或是低精度陀螺温度变化较大的情况,这种补偿方法对陀螺系统的硬件要求低,试验结果表明,该补偿方法能有效抑制光纤陀螺随温度变化而导致的漂移速率误差.
理論上,採用四極對稱法繞製的光纖線圈能很好抑製溫度梯度對光纖陀螺的影響,實際上,由于結構加工不理想或石英纏繞引起自身的機械形變,使線圈內外的溫度變化,從而導緻陀螺輸齣速率誤差.該文分析併給齣瞭光纖陀螺輸齣速率誤差與線圈內外溫度差或溫度梯度間的關繫,提齣瞭一種補償光纖陀螺因溫度變化而導緻輸齣速率漂移誤差的方法,儘管光纖陀螺因溫度變化所導緻的溫度漂移不可避免,我們通過測量穫取陀螺內部的溫度梯度變化併計算齣脩正繫數來對光纖陀螺的輸齣進行補償脩正,這種方法適閤高精度陀螺溫度變化較小或是低精度陀螺溫度變化較大的情況,這種補償方法對陀螺繫統的硬件要求低,試驗結果錶明,該補償方法能有效抑製光纖陀螺隨溫度變化而導緻的漂移速率誤差.
이론상,채용사겁대칭법요제적광섬선권능흔호억제온도제도대광섬타라적영향,실제상,유우결구가공불이상혹석영전요인기자신적궤계형변,사선권내외적온도변화,종이도치타라수출속솔오차.해문분석병급출료광섬타라수출속솔오차여선권내외온도차혹온도제도간적관계,제출료일충보상광섬타라인온도변화이도치수출속솔표이오차적방법,진관광섬타라인온도변화소도치적온도표이불가피면,아문통과측량획취타라내부적온도제도변화병계산출수정계수래대광섬타라적수출진행보상수정,저충방법괄합고정도타라온도변화교소혹시저정도타라온도변화교대적정황,저충보상방법대타라계통적경건요구저,시험결과표명,해보상방법능유효억제광섬타라수온도변화이도치적표이속솔오차.
Theoretically, the effect of the temperature gradient on the fiber optic gyroscope (FOG) can be well suppressed by using the quadrupole winding. In fact, the imperfect structure or winding causing glass coil distortion leads to FOG output rate error when there are temperature changes between FOG housing and the sensor coil spool. This paper shows a relationship between FOG output rate error and temperature change or temperature gradients. A method of compensating the FOG output drift rate error caused by the temperature change has been proposed. As is known that FOG drift rate error due to rates of temperature change is almost unavoidable, but we can make some adjustments by acquiring temperature gradients in FOG and calculating the required correction factor. This method is suited to high accuracy FOG in which temperature changes are small or to low accuracy FOG when thermal disturb ances are relatively large. A best merit of this compensation method is its low requirements for the hardware. Test results demonstrate that the above mentioned compensation method can largely suppress the FOG rate drift error for temperature changes.