襄樊学院学报
襄樊學院學報
양번학원학보
JOURNAL OF XIANGFAN UNIVERSITY
2011年
8期
9-12
,共4页
hopf分支%中心流形%上临界分支
hopf分支%中心流形%上臨界分支
hopf분지%중심류형%상림계분지
Hopf bifurcation%Center manifold%Supercritical bifurcation
以时滞τ为参数,利用特征根法分析平衡点的稳定性,得到稳定性存在的范围及在平衡点处产生hopf分支的条件,再利用中心流形定理和规范型理论,得到hopf周期解的稳定性及计算公式,为数值模拟提供依据.
以時滯τ為參數,利用特徵根法分析平衡點的穩定性,得到穩定性存在的範圍及在平衡點處產生hopf分支的條件,再利用中心流形定理和規範型理論,得到hopf週期解的穩定性及計算公式,為數值模擬提供依據.
이시체τ위삼수,이용특정근법분석평형점적은정성,득도은정성존재적범위급재평형점처산생hopf분지적조건,재이용중심류형정리화규범형이론,득도hopf주기해적은정성급계산공식,위수치모의제공의거.
In this paper, using time lag τ as a parameter and using analytical method, we firstly analyze the stability and hopf bifurcation of the equilibriums in Marchuk's model. We obtain the condition and domain of stability on the equilibriums and the condition of the occurrence of hopf bifurcation. Secondly using the center manifold theorem and normal form theory, we obtain the calculation formulas which reflect the stability with hopf bifurcation periodic solution and bifurccation direction. Thus it provides a basis for numerical simulation calculation.