惠州学院学报
惠州學院學報
혜주학원학보
JOURNAL OF HUIZHOU UNIVERSITY
2011年
6期
13-15
,共3页
卫斌%朱恩强%文飞%徐文辉
衛斌%硃恩彊%文飛%徐文輝
위빈%주은강%문비%서문휘
圈%平方图%Smarandachely邻点全染色
圈%平方圖%Smarandachely鄰點全染色
권%평방도%Smarandachely린점전염색
Adjacent vertex -distinguishing total coloring%Smarandachely adjacent vertex total chromatic
对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,A,k}的映射,k是自然数,若,满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)Vuv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\G(u)\C(v)\≥1并且IG(v)\C(u)1≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.
對簡單圖G(V,E)f,是從V(G)∪E(G)到{1,2,A,k}的映射,k是自然數,若,滿足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)Vuv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\G(u)\C(v)\≥1併且IG(v)\C(u)1≥1;則稱f是G的Smarandachely鄰點全染色.本文給齣瞭圈的平方圖的的Smarandachely鄰點全色數.
대간단도G(V,E)f,시종V(G)∪E(G)도{1,2,A,k}적영사,k시자연수,약,만족(1)u,v∈E(G),u≠,f(u)≠f(v);(2)Vuv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\G(u)\C(v)\≥1병차IG(v)\C(u)1≥1;칙칭f시G적Smarandachely린점전염색.본문급출료권적평방도적적Smarandachely린점전색수.
Let G be a simple graph, k is a positive integer, fis a mapping from V(G) U E (G) to { 1,2, A, k } such that : ( 1 ) V u, v E(G),u#,f(u) ∈ f(v); (2) Vuv,uw ∈ E(G),v # w,f(uv) # f(uw); (3)Vuv ∈ E(G), [ C(u)/C(v) [t〉 1 # and I C(v) /C(u) I ≥ 1 ; we say thatfis a the smarandaehely adjacent vertex total of graphG. The minimal number ofk is called the sma- randaehely adjacent vertex total chromatic number ofG , In this paper, we discuss the smarandachely adjacent vertex total chromatic number of C2, .