纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2006年
3期
225-229
,共5页
纳米压印%纳米加工%纳米光子学
納米壓印%納米加工%納米光子學
납미압인%납미가공%납미광자학
Nanoimprint%nanofabrication%nanophotonics
紫外光固化纳米压印是实现纳米结构批量复制的一种新技术.其特点是低成本和高分辨,而且可以达到极高的套刻精度.为了得到大面积图案的均匀复制,可用聚二甲基硅氧烷(PDMS)制备透光的压印软模板.其母版图案可由高分辨率电子束曝光和反应离子刻蚀的方法在硅片基底上获得,然后用浇注的方法将图案转移到PDMS上.本实验特别发展了紫外光固化纳米压印适用于软膜压印的双层膜图型转移技术.该双层膜由廉价的光胶和聚甲基丙烯酸甲脂(PMMA)构成.对光胶层的压印可用普通的光学曝光仪实现.然后再将图案用反应离子刻蚀的方法转移到PMMA层中.为了证明方案的可行性,在两种不同材料的半导体基片上压印了三角晶格的光子晶体和准晶结构的图案,并用剥离的方法将它们转移到金属薄膜上,最后成功地进行了硅片刻蚀实验.相信这一纳米制做方法对大面积纳米光子结构和光学集成芯片的制造是普遍适用的.
紫外光固化納米壓印是實現納米結構批量複製的一種新技術.其特點是低成本和高分辨,而且可以達到極高的套刻精度.為瞭得到大麵積圖案的均勻複製,可用聚二甲基硅氧烷(PDMS)製備透光的壓印軟模闆.其母版圖案可由高分辨率電子束曝光和反應離子刻蝕的方法在硅片基底上穫得,然後用澆註的方法將圖案轉移到PDMS上.本實驗特彆髮展瞭紫外光固化納米壓印適用于軟膜壓印的雙層膜圖型轉移技術.該雙層膜由廉價的光膠和聚甲基丙烯痠甲脂(PMMA)構成.對光膠層的壓印可用普通的光學曝光儀實現.然後再將圖案用反應離子刻蝕的方法轉移到PMMA層中.為瞭證明方案的可行性,在兩種不同材料的半導體基片上壓印瞭三角晶格的光子晶體和準晶結構的圖案,併用剝離的方法將它們轉移到金屬薄膜上,最後成功地進行瞭硅片刻蝕實驗.相信這一納米製做方法對大麵積納米光子結構和光學集成芯片的製造是普遍適用的.
자외광고화납미압인시실현납미결구비량복제적일충신기술.기특점시저성본화고분변,이차가이체도겁고적투각정도.위료득도대면적도안적균균복제,가용취이갑기규양완(PDMS)제비투광적압인연모판.기모판도안가유고분변솔전자속폭광화반응리자각식적방법재규편기저상획득,연후용요주적방법장도안전이도PDMS상.본실험특별발전료자외광고화납미압인괄용우연막압인적쌍층막도형전이기술.해쌍층막유렴개적광효화취갑기병희산갑지(PMMA)구성.대광효층적압인가용보통적광학폭광의실현.연후재장도안용반응리자각식적방법전이도PMMA층중.위료증명방안적가행성,재량충불동재료적반도체기편상압인료삼각정격적광자정체화준정결구적도안,병용박리적방법장타문전이도금속박막상,최후성공지진행료규편각식실험.상신저일납미제주방법대대면적납미광자결구화광학집성심편적제조시보편괄용적.
Nanoimprint lithography assisted by UV solidification is a new technique to pattern nanostructures by replication. It is low cost and high resolution with the possibility to achieve very alignment accuracy. In order to obtain good pattern homogeneity over large areas, soft transparent molds can be made of polydimethylsiloxane (PDMS) by casting on a silicon mater defined by high resolution electron beam lithography and reactive ions etch techniques. This work is devoted to a general bi-layer resist pattern transfer process which is compatible to the soft UV nanoimprint lithography. The bi-layer system we used consists of a low cost photo-curable polymer and a PMMA buffer layer. Imprinting has been done using a normal photolithography aligner. Then, the imprinted patterns have been transferred into the PMMA laser by reactive ion etching. To demonstrate the process feasibility, photonic crystals of both triangle and quasi-crystal lattices were patterned on two types of semiconductor substrates by soft UV nanoimprint and transferred by lift-off with a thin metal layer. Finally, reactive ion etch has been achieved with the patterned silicon wafer. We believe that this fabrication process is versatile for the manufacturing of large area photonic nanostructures as well as optical integrated circuits.