生物数学学报
生物數學學報
생물수학학보
JOURNAL OF BIOMATHEMATICS
2008年
2期
202-208
,共7页
食饵-捕食模型%脉冲扰动%永久持续生存%阶段结构
食餌-捕食模型%脈遲擾動%永久持續生存%階段結構
식이-포식모형%맥충우동%영구지속생존%계단결구
Predator-prey models%Impulse perturbation%Permanence%Stage structure
我们考虑了一个具有阶段结构和Leslie-Gower Holling II功能性反应自々时滞脉冲食饵.捕食系统.运用脉冲微分方程的比较定理和小扰动的方法,我们得到了保证系统食饵灭绝周期解的全局渐近稳定性和系统永久持续生存的条件.
我們攷慮瞭一箇具有階段結構和Leslie-Gower Holling II功能性反應自々時滯脈遲食餌.捕食繫統.運用脈遲微分方程的比較定理和小擾動的方法,我們得到瞭保證繫統食餌滅絕週期解的全跼漸近穩定性和繫統永久持續生存的條件.
아문고필료일개구유계단결구화Leslie-Gower Holling II공능성반응자々시체맥충식이.포식계통.운용맥충미분방정적비교정리화소우동적방법,아문득도료보증계통식이멸절주기해적전국점근은정성화계통영구지속생존적조건.
In this paper, we consider a stage-structured and modified Leslie-Gower Holling II type schemes predator-prey model with time delay and impulsive harvesting on predator. By using the comparison theory of impulsive equation and small pertur-bation method, we obtain some corresponding threshold conditions which guarantee the globally asymptotical stability of prey-extinction periodic solution and the permanence of this system.