动力工程
動力工程
동력공정
POWER ENGINEERING
2009年
11期
1057-1060
,共4页
夏迎迎%付炜%黄桃花%王亦飞%王辅臣
夏迎迎%付煒%黃桃花%王亦飛%王輔臣
하영영%부위%황도화%왕역비%왕보신
石灰石煅烧产物%多孔氧化钙%孔隙特征%孔径分布密度%孔长度%数学模型%高温脱硫
石灰石煅燒產物%多孔氧化鈣%孔隙特徵%孔徑分佈密度%孔長度%數學模型%高溫脫硫
석회석단소산물%다공양화개%공극특정%공경분포밀도%공장도%수학모형%고온탈류
limestone calcination%porous Cad%pore structural feature%distribution density of pore size%pore length%mathematical model%high-temperature desulfurization
为了研究石灰石煅烧产物 CaO 的孔隙特征与脱硫过程的关系,建立了 CaO 孔结构特征的数学模型,利用模型计算了 CaO 内部孔的比表面积和孔容积,计算值与实测值吻合良好.重点对0~5 nm,5~20 nm,20~100 nm及>100 nm 4个孔径范围进行了分析,结果表明:在 3 种试样中,试样 A 的粒径最大,孔径分布最宽,函数峰值所对应的孔半径及平均孔半径最大;试样 B 的粒径居中,但是孔径分布最窄,函数峰值所对应的孔半径及平均孔半径最小;粒径最小的试样 C,煅烧时可能部分烧结,导致函数峰值所对应的孔半径及平均孔半径比试样 B 大.在 3 种试样中,试样 B 的有效孔径(5~20 nm)所占的比例最大,由此预测其脱硫效果最好,选取上述 3 种粒径石灰石煅烧产物进行脱硫实验,实验结果与预测结果一致.
為瞭研究石灰石煅燒產物 CaO 的孔隙特徵與脫硫過程的關繫,建立瞭 CaO 孔結構特徵的數學模型,利用模型計算瞭 CaO 內部孔的比錶麵積和孔容積,計算值與實測值吻閤良好.重點對0~5 nm,5~20 nm,20~100 nm及>100 nm 4箇孔徑範圍進行瞭分析,結果錶明:在 3 種試樣中,試樣 A 的粒徑最大,孔徑分佈最寬,函數峰值所對應的孔半徑及平均孔半徑最大;試樣 B 的粒徑居中,但是孔徑分佈最窄,函數峰值所對應的孔半徑及平均孔半徑最小;粒徑最小的試樣 C,煅燒時可能部分燒結,導緻函數峰值所對應的孔半徑及平均孔半徑比試樣 B 大.在 3 種試樣中,試樣 B 的有效孔徑(5~20 nm)所佔的比例最大,由此預測其脫硫效果最好,選取上述 3 種粒徑石灰石煅燒產物進行脫硫實驗,實驗結果與預測結果一緻.
위료연구석회석단소산물 CaO 적공극특정여탈류과정적관계,건립료 CaO 공결구특정적수학모형,이용모형계산료 CaO 내부공적비표면적화공용적,계산치여실측치문합량호.중점대0~5 nm,5~20 nm,20~100 nm급>100 nm 4개공경범위진행료분석,결과표명:재 3 충시양중,시양 A 적립경최대,공경분포최관,함수봉치소대응적공반경급평균공반경최대;시양 B 적립경거중,단시공경분포최착,함수봉치소대응적공반경급평균공반경최소;립경최소적시양 C,단소시가능부분소결,도치함수봉치소대응적공반경급평균공반경비시양 B 대.재 3 충시양중,시양 B 적유효공경(5~20 nm)소점적비례최대,유차예측기탈류효과최호,선취상술 3 충립경석회석단소산물진행탈류실험,실험결과여예측결과일치.
In order to find the relationship between the pore structure of Cad from limestone calcination and the desulfurization process, a mathematical model for describing the pore structure was developed, with which pore volume and specific surface area calculated. The calculated results agree well with that of actual measurements. With focus on following 4 pore size ranges: 0-5 nm, 5-20 nm, 20-100 nm and 100 nm above, 3 samples respectively coded as A, B and C were analyzed. Results show that among the 3 samples tested, sample A, whose particle sizes are the largest, has the widest range of pore size distribution, the largest pore size corresponding to the peak value and the largest average pore radius; sample B, whose particle sizes are the medium, has the narrowest range of pore size distribution, the smallest pore size corresponding to the peak value and the smallest average pore radius; sample C, whose particle sizes are
the smallest, may be partially sintered, and therefore resulting in larger pore radius corresponding to the peak value and larger average pore radius than sample B. Particles of sample B have the largest proportion of effective radius (5-20 nm) among the 3 samples, and therefore it is believed to have the best desulfurization effect. This assumption has been proved by actual experiments based on Cad with above 3 sizes.