热科学与技术
熱科學與技術
열과학여기술
JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY
2009年
4期
318-325
,共8页
方形旋风分离器%进口结构%数值模拟
方形鏇風分離器%進口結構%數值模擬
방형선풍분리기%진구결구%수치모의
square cyclone separator%inlet configuration,numerical simulation
利用CFD模拟研究了一种具有双矩形进口的方形截面的旋风分离器内部的流动特点,其中气相模型采用了雷诺应力湍流模型(Reynolds stress model, RSM),颗粒相采用随机轨道模型.计算结果与文献实验数据的对比表明模型具有可靠性.模拟结果表明:在分离器内部的排气管和分离器壁面间的区域为强旋湍流区,靠近分离器壁面和排气管壁面的区域旋流强度较弱;排气管下的分离器内出现了回流;进口结构影响分离器内的旋流分布特点和回流开始位置及湍动能的分布,从而影响了分离效率和阻力,其中倾斜双进口的方形分离器内旋转向下的气流运动区域更大,回流开始位置更低,因此其分离效果更好;进口结构影响分离器内局部湍动能的分布特点和大小,从而决定了分离器的阻力大小;倾斜双进口的方形分离器内的局部湍动能小于对应的垂直单、双进口分离器,因此其阻力系数最小.
利用CFD模擬研究瞭一種具有雙矩形進口的方形截麵的鏇風分離器內部的流動特點,其中氣相模型採用瞭雷諾應力湍流模型(Reynolds stress model, RSM),顆粒相採用隨機軌道模型.計算結果與文獻實驗數據的對比錶明模型具有可靠性.模擬結果錶明:在分離器內部的排氣管和分離器壁麵間的區域為彊鏇湍流區,靠近分離器壁麵和排氣管壁麵的區域鏇流彊度較弱;排氣管下的分離器內齣現瞭迴流;進口結構影響分離器內的鏇流分佈特點和迴流開始位置及湍動能的分佈,從而影響瞭分離效率和阻力,其中傾斜雙進口的方形分離器內鏇轉嚮下的氣流運動區域更大,迴流開始位置更低,因此其分離效果更好;進口結構影響分離器內跼部湍動能的分佈特點和大小,從而決定瞭分離器的阻力大小;傾斜雙進口的方形分離器內的跼部湍動能小于對應的垂直單、雙進口分離器,因此其阻力繫數最小.
이용CFD모의연구료일충구유쌍구형진구적방형절면적선풍분리기내부적류동특점,기중기상모형채용료뢰낙응력단류모형(Reynolds stress model, RSM),과립상채용수궤궤도모형.계산결과여문헌실험수거적대비표명모형구유가고성.모의결과표명:재분리기내부적배기관화분리기벽면간적구역위강선단류구,고근분리기벽면화배기관벽면적구역선류강도교약;배기관하적분리기내출현료회류;진구결구영향분리기내적선류분포특점화회류개시위치급단동능적분포,종이영향료분리효솔화조력,기중경사쌍진구적방형분리기내선전향하적기류운동구역경대,회류개시위치경저,인차기분리효과경호;진구결구영향분리기내국부단동능적분포특점화대소,종이결정료분리기적조력대소;경사쌍진구적방형분리기내적국부단동능소우대응적수직단、쌍진구분리기,인차기조력계수최소.
A CFD numerical simulated model on the effect of inlet configuration on the pressure drop and separation efficiency of a square-type cyclone separator was presented. The Reynolds Stress Model (RSM) was used to simulate the turbulent flow of gas phase and a random trajectory model was applied to simulate the particle motion. The CFD results of the velocity, grade separation efficiency and pressure drop agreed well with the experimental data. The numerical results also show that the flow field in the cyclone includes a strong swirling region between the exhaust exit and the separating wall with a weak swirling region near the separator wall. There is a recirculation flow just beneath the gas exhaust tube. The inlet configuration influences the position where the recirculation flow begins and the swirling field in the separator, leading to different separation efficiency and pressure drop. Among the three models of the separator, the one with double inclined inlets has a higher separation efficiency. The numerical results show that the region of downward swirling flow is larger and the position of upward recirculation flow is lower in the separator with double inclined inlets. At the same time, the local turbulent kinetic energy is smaller than that in the separator with one and double perpendicular inlets, which leads to a smaller pressure drop for the separator with double inclined inlets.