中国水土保持科学
中國水土保持科學
중국수토보지과학
SCIENCE OF SOIL AND WATER CONSERVATION
2005年
4期
60-64,69
,共6页
杨喜田%董惠英%山寺喜成
楊喜田%董惠英%山寺喜成
양희전%동혜영%산사희성
森林恢复%栽植%根系%播种%土壤硬度%林木稳定性
森林恢複%栽植%根繫%播種%土壤硬度%林木穩定性
삼림회복%재식%근계%파충%토양경도%림목은정성
forest restoration%planting%root system%seeding%soil hardness%tree stability
以赤松为实验材料,研究土壤硬度对播种苗和栽植苗根系发育的差异性.土壤硬度被设计为5个等级(用山中式土壤硬度计测定分别为10,15,20,25和30mm).分别调查播种苗与栽植苗根长、根系形态、苗高以及地上部和地下部生物量.结果表明:与播种苗相比,栽植苗形成细、短的根系,但根系数量较多;所有处理的栽植苗的主根丧失,而播种苗的主根则相对较为完整;播种苗的根径比随着土壤硬度的增加而增加(土壤硬度为10,25和30mm时的根径比分别为2.1,3.3和5.8),而栽植苗的根径比则随着土壤硬度的增加而减小(土壤硬度为10,25和30mm时的根径比分别为4.0,2.5和2.4).这就意味着在紧实的土壤条件下,播种苗的根系生长要优先于地上部的生长;当土壤硬度大于25mm时,栽植苗的根系很难穿透植树穴,从而使根系发生缠绕.播种苗与栽植苗根系发育的这些差异,将会影响到树木的生长量、稳定性、水土保持能力以及对气候变化如干旱等的适应能力.因此,当恢复退化土地的植被时,进行土壤改良并采用播种恢复技术,将是成功恢复植被、形成稳定的森林群落的重要和必要的积极措施.
以赤鬆為實驗材料,研究土壤硬度對播種苗和栽植苗根繫髮育的差異性.土壤硬度被設計為5箇等級(用山中式土壤硬度計測定分彆為10,15,20,25和30mm).分彆調查播種苗與栽植苗根長、根繫形態、苗高以及地上部和地下部生物量.結果錶明:與播種苗相比,栽植苗形成細、短的根繫,但根繫數量較多;所有處理的栽植苗的主根喪失,而播種苗的主根則相對較為完整;播種苗的根徑比隨著土壤硬度的增加而增加(土壤硬度為10,25和30mm時的根徑比分彆為2.1,3.3和5.8),而栽植苗的根徑比則隨著土壤硬度的增加而減小(土壤硬度為10,25和30mm時的根徑比分彆為4.0,2.5和2.4).這就意味著在緊實的土壤條件下,播種苗的根繫生長要優先于地上部的生長;噹土壤硬度大于25mm時,栽植苗的根繫很難穿透植樹穴,從而使根繫髮生纏繞.播種苗與栽植苗根繫髮育的這些差異,將會影響到樹木的生長量、穩定性、水土保持能力以及對氣候變化如榦旱等的適應能力.因此,噹恢複退化土地的植被時,進行土壤改良併採用播種恢複技術,將是成功恢複植被、形成穩定的森林群落的重要和必要的積極措施.
이적송위실험재료,연구토양경도대파충묘화재식묘근계발육적차이성.토양경도피설계위5개등급(용산중식토양경도계측정분별위10,15,20,25화30mm).분별조사파충묘여재식묘근장、근계형태、묘고이급지상부화지하부생물량.결과표명:여파충묘상비,재식묘형성세、단적근계,단근계수량교다;소유처리적재식묘적주근상실,이파충묘적주근칙상대교위완정;파충묘적근경비수착토양경도적증가이증가(토양경도위10,25화30mm시적근경비분별위2.1,3.3화5.8),이재식묘적근경비칙수착토양경도적증가이감소(토양경도위10,25화30mm시적근경비분별위4.0,2.5화2.4).저취의미착재긴실적토양조건하,파충묘적근계생장요우선우지상부적생장;당토양경도대우25mm시,재식묘적근계흔난천투식수혈,종이사근계발생전요.파충묘여재식묘근계발육적저사차이,장회영향도수목적생장량、은정성、수토보지능력이급대기후변화여간한등적괄응능력.인차,당회복퇴화토지적식피시,진행토양개량병채용파충회복기술,장시성공회복식피、형성은정적삼림군락적중요화필요적적겁조시.
Effects of soil hardness on the growth of seeded and planted Pinus densiflora Sieb. et Zucc.seedlings were investigated. Soil hardness was managed for 5 levels (10, 15, 20, 25 and 30 mm of soil hardness index for Yamanaka Type), and P. densiflora was planted and seeded in each treatment. The root length,the state of root system, stem height, stem basal diameter, biomass of above- and below-ground were investigated. The planted seedling had thinner and shorter roots and the number of roots was more than that of the seeded plant. The main root of the planted plant disappeared in each soil hardness treatment, but the seeded plant remained the main root in every treatment. The ratio of root length to stem height in the seeded plant increased with the soil hardness increasing (2.1, 3.3 and 5.8 when soil hardness was 10 mm, 25 mm and 30mm, respectively). On the other hand, the ratio of root length to stem height in the planted plant decreased when soil hardness became harder (4.0, 2.5 and 2.4 when soil hardness was 10 mm, 25 mm and 30 mm,respectively). This means that the root of the seeded plant grow more preferentially than the growth of stem under hard soil conditions. When the plant was planted in the soil harder than 25mm, seedlings could not extend their roots beyond the planting holes and the root system became twisted. These differences between seeded and planted seedlings will effect plant growth, stability of trees, soil conservation ability and the tolerance to the consequence of variation of climate such as dryness. Thus, when we restore forest in degraded lands, soil modifying and the choice of restoring strategy of seeding will be important and necessary to facilitate forest succession and develop balanced forest population.