机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2010年
2期
166-171
,共6页
扫描运动%轨迹规划%精度控制%离散积分
掃描運動%軌跡規劃%精度控製%離散積分
소묘운동%궤적규화%정도공제%리산적분
Scan-move%Trajectory planning%Precision control%Discrete-time integration
研究一种步进扫描投影光刻机工作台扫描运动超精密轨迹规划算法及误差控制策略.在分析三阶扫描运动与步进运动轨迹规划异同点的基础上,提出三阶扫描运动轨迹规划算法.针对扫描运动精确性与严格同步性要求,分析扫描运动轨迹规划误差补偿的几个关键问题.根据扫描运动轨迹算法离散实现存在的误差,结合内部整数积分策略,提出扫描运动轨迹规划加减速段与扫描速度稳定段运动距离的离散积分策略误差控制方法.此外,为克服切换时间圆整引起的扫描曝光匀速段位置误差,提出一种基于常速扫描运动段位置修正因子的误差补偿方法.以上方法共同实现光刻机工作台扫描运动轨迹规划精度控制.实例证明提出算法是有效和精确的.该算法成功应用于100 nm步进扫描投影光刻机工作台的超精密运动控制系统中.
研究一種步進掃描投影光刻機工作檯掃描運動超精密軌跡規劃算法及誤差控製策略.在分析三階掃描運動與步進運動軌跡規劃異同點的基礎上,提齣三階掃描運動軌跡規劃算法.針對掃描運動精確性與嚴格同步性要求,分析掃描運動軌跡規劃誤差補償的幾箇關鍵問題.根據掃描運動軌跡算法離散實現存在的誤差,結閤內部整數積分策略,提齣掃描運動軌跡規劃加減速段與掃描速度穩定段運動距離的離散積分策略誤差控製方法.此外,為剋服切換時間圓整引起的掃描曝光勻速段位置誤差,提齣一種基于常速掃描運動段位置脩正因子的誤差補償方法.以上方法共同實現光刻機工作檯掃描運動軌跡規劃精度控製.實例證明提齣算法是有效和精確的.該算法成功應用于100 nm步進掃描投影光刻機工作檯的超精密運動控製繫統中.
연구일충보진소묘투영광각궤공작태소묘운동초정밀궤적규화산법급오차공제책략.재분석삼계소묘운동여보진운동궤적규화이동점적기출상,제출삼계소묘운동궤적규화산법.침대소묘운동정학성여엄격동보성요구,분석소묘운동궤적규화오차보상적궤개관건문제.근거소묘운동궤적산법리산실현존재적오차,결합내부정수적분책략,제출소묘운동궤적규화가감속단여소묘속도은정단운동거리적리산적분책략오차공제방법.차외,위극복절환시간원정인기적소묘폭광균속단위치오차,제출일충기우상속소묘운동단위치수정인자적오차보상방법.이상방법공동실현광각궤공작태소묘운동궤적규화정도공제.실예증명제출산법시유효화정학적.해산법성공응용우100 nm보진소묘투영광각궤공작태적초정밀운동공제계통중.
A trajectory planning method and precision control strategies for scan-move of step-scan projection lithography are investigated. The difference of trajectory planning between step-move and scan-move is firstly discussed. Aiming at the requirements of accuracy and strict synchronization of scan-move, several key issues are analyzed. Considering the accuracy losses in discrete-time implementation of trajectory planning algorithm, the integration strategy in discrete-time domain of precision control of trajectory planning is presented with combination of internal integer integration strategy. Furthermore, a compensation method with a correcting factor of constant velocity scan phase is advanced. Experiment results demonstrate that the proposed trajectory planning algorithm and its precision compensation strategy are accurate and effective. These methods are successfully applied in ultra-precision motion control system of 100 nm step-scan projection lithography equipment.