计算物理
計算物理
계산물리
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2011年
5期
737-742
,共6页
张春丽%陈素华%杨振宇%车继馨
張春麗%陳素華%楊振宇%車繼馨
장춘려%진소화%양진우%차계형
二维渐近边界条件%辛算法%任意极化%高次谐波
二維漸近邊界條件%辛算法%任意極化%高次諧波
이유점근변계조건%신산법%임의겁화%고차해파
2-dimensional asymptotic boundary condition%symplectic algorithm%arbitrary polarization%high-order harmonic generation
采用二维渐近边界条件,将任意极化激光与原子相互作用的二维含时Schr(o)dinger方程无穷空间初值问题转化为有界空间的初边值问题,近而将截断后的初边值问题离散成线性正则方程组,而后利用辛算法求解正则方程得到含时波函数.最后利用含时波函数求得高次谐波谱,证明二维渐近边界条件和辛算法是合理而有效的.
採用二維漸近邊界條件,將任意極化激光與原子相互作用的二維含時Schr(o)dinger方程無窮空間初值問題轉化為有界空間的初邊值問題,近而將截斷後的初邊值問題離散成線性正則方程組,而後利用辛算法求解正則方程得到含時波函數.最後利用含時波函數求得高次諧波譜,證明二維漸近邊界條件和辛算法是閤理而有效的.
채용이유점근변계조건,장임의겁화격광여원자상호작용적이유함시Schr(o)dinger방정무궁공간초치문제전화위유계공간적초변치문제,근이장절단후적초변치문제리산성선성정칙방정조,이후이용신산법구해정칙방정득도함시파함수.최후이용함시파함수구득고차해파보,증명이유점근변계조건화신산법시합리이유효적.
2-dimensional(2-D)asymptotic boundary condition(ABC)of 2-D time-dependent Schr(o)dinger equation (TDSE)for atoms in an arbitrary polarized laser field is investigated.The condition is obtained by means of Fourier transformation,and the 2-D TDSE is discretized into a linear canonical equation solved via symplectic algorithm.An arbitrary polarized laser-atom interaction is also investigated.Calculated high order harmonic generation(HHG)spectra are in good agreement with theoretical results.