传感技术学报
傳感技術學報
전감기술학보
Journal of Transduction Technology
2010年
2期
229-234
,共6页
唐晓芬%侯迪波%俞丞%潘强%张光新%周泽魁
唐曉芬%侯迪波%俞丞%潘彊%張光新%週澤魁
당효분%후적파%유승%반강%장광신%주택괴
水平集方法%曲线演化%图像分割%道路提取
水平集方法%麯線縯化%圖像分割%道路提取
수평집방법%곡선연화%도상분할%도로제취
level set method%curve evolution%image segmentation%road extraction
提出了一种基于改进水平集方法的遥感图像道路提取实用方法.针对水平集分割方法速度较慢以及对区域划分仅仅考虑灰度特征等不足,提出一种改进算法,通过引入罚甬数项,并整合RGB空间和HSI空间的各通道信息,构造了一类基于多空间信息且无需重新初始化的水平集演化方程.同时针对遥感图像幅值大的特点,建立整图划分若干子图的划分方法,使提取的目标道路集中在少量子图中,减少了无目标背景干扰.利用QuickBird 0.61 m分辨率遥感图像进行道路信息提取试验,并建立评价指标对算法结果进行量化评价和分析.结果表明,研究的方法可较好地抑制区域背景噪声的干扰,快速准确地提出完整的道路区域,在道路交通规划辅助决策等领域具有重要的应用前景.
提齣瞭一種基于改進水平集方法的遙感圖像道路提取實用方法.針對水平集分割方法速度較慢以及對區域劃分僅僅攷慮灰度特徵等不足,提齣一種改進算法,通過引入罰甬數項,併整閤RGB空間和HSI空間的各通道信息,構造瞭一類基于多空間信息且無需重新初始化的水平集縯化方程.同時針對遙感圖像幅值大的特點,建立整圖劃分若榦子圖的劃分方法,使提取的目標道路集中在少量子圖中,減少瞭無目標揹景榦擾.利用QuickBird 0.61 m分辨率遙感圖像進行道路信息提取試驗,併建立評價指標對算法結果進行量化評價和分析.結果錶明,研究的方法可較好地抑製區域揹景譟聲的榦擾,快速準確地提齣完整的道路區域,在道路交通規劃輔助決策等領域具有重要的應用前景.
제출료일충기우개진수평집방법적요감도상도로제취실용방법.침대수평집분할방법속도교만이급대구역화분부부고필회도특정등불족,제출일충개진산법,통과인입벌용수항,병정합RGB공간화HSI공간적각통도신식,구조료일류기우다공간신식차무수중신초시화적수평집연화방정.동시침대요감도상폭치대적특점,건립정도화분약간자도적화분방법,사제취적목표도로집중재소양자도중,감소료무목표배경간우.이용QuickBird 0.61 m분변솔요감도상진행도로신식제취시험,병건립평개지표대산법결과진행양화평개화분석.결과표명,연구적방법가교호지억제구역배경조성적간우,쾌속준학지제출완정적도로구역,재도로교통규화보조결책등영역구유중요적응용전경.
A novel scheme that makes use of improved level set extract roads in high-resolution remote sensing images (RS) is proposed. The traditional level set methods for image segmentation are computational expensive due to the re-initiation and the methods always only use the gray value as input information. To solve these problems, the proposed approach introduces a distance regularizing term into the CV model, and utilizes both gray features and each channel of HSI model to construct a new level set evolution function without re-initialization. Furthermore, a framework of dividing large images into sub-images is designed according to the size of the RS images. It makes the roads' objects lie in fewer images, and reduces the noises from the background. The proposed approach was tested by the QuickBird RS images at 0. 61 m resolution and two numeral indexes were defined to evaluate the results. Results show that the presented approach reduces the influence of area noises and is able to extracts the roads precisely. These make it be a valuable and promising method for decision-making in transportation.