中国医学影像技术
中國醫學影像技術
중국의학영상기술
CHINESE JOURNAL OF MEDICAL IMAGING TECHNOLOGY
2010年
4期
589-592
,共4页
李涛%高建华%赵绍宏%周卫华%蔡祖龙%杨立%程流泉%高元桂
李濤%高建華%趙紹宏%週衛華%蔡祖龍%楊立%程流泉%高元桂
리도%고건화%조소굉%주위화%채조룡%양립%정류천%고원계
冠状血管%磁共振成像
冠狀血管%磁共振成像
관상혈관%자공진성상
Coronary vessels%Magnetic resonance imaging
目的 利用1.5T MR扫描仪寻求简单易行的体外冠状动脉管壁成像程序.方法 对10个猪心行冠状动脉MR检查.以3D FIESTA序列行前降支成像,分别选择8通道头部线圈、膝关节线圈、颞下颌关节表面线圈行2D SE T1WI, 成像参数均相同,之后用颞下颌关节表面线圈,采用384×256和512×512的矩阵行T1WI.注入对比剂后,分别使用不同的NEX行SE T1WI、PDWI和frFSE T2WI.测量前降支近段管壁、管腔、前降支周围心外膜下的脂肪结缔组织、前降支邻近的室间隔心肌的信号强度,并测量周围空气的信号强度作为背景噪声,计算图像的信噪比(SNR)和冠状动脉管壁对管腔的对比噪声比(CNR1)及冠状动脉管壁对周围心外膜下脂肪结缔组织的对比噪声比(CNR2).结果 颞下颌关节表面线圈成像前降支管壁SE T1WI的SNR和CNR1、CNR2明显高于8通道头线圈和膝关节线圈.384×256矩阵所得的SE T1WI的SNR和CNR1、CNR2明显高于512×512矩阵.NEX为3时图像的SNR和CNR1、CNR2最高.结论 选择颞下颌关节表面线圈、384×256的矩阵、3个NEX可以得到良好的SNR和CNR.
目的 利用1.5T MR掃描儀尋求簡單易行的體外冠狀動脈管壁成像程序.方法 對10箇豬心行冠狀動脈MR檢查.以3D FIESTA序列行前降支成像,分彆選擇8通道頭部線圈、膝關節線圈、顳下頜關節錶麵線圈行2D SE T1WI, 成像參數均相同,之後用顳下頜關節錶麵線圈,採用384×256和512×512的矩陣行T1WI.註入對比劑後,分彆使用不同的NEX行SE T1WI、PDWI和frFSE T2WI.測量前降支近段管壁、管腔、前降支週圍心外膜下的脂肪結締組織、前降支鄰近的室間隔心肌的信號彊度,併測量週圍空氣的信號彊度作為揹景譟聲,計算圖像的信譟比(SNR)和冠狀動脈管壁對管腔的對比譟聲比(CNR1)及冠狀動脈管壁對週圍心外膜下脂肪結締組織的對比譟聲比(CNR2).結果 顳下頜關節錶麵線圈成像前降支管壁SE T1WI的SNR和CNR1、CNR2明顯高于8通道頭線圈和膝關節線圈.384×256矩陣所得的SE T1WI的SNR和CNR1、CNR2明顯高于512×512矩陣.NEX為3時圖像的SNR和CNR1、CNR2最高.結論 選擇顳下頜關節錶麵線圈、384×256的矩陣、3箇NEX可以得到良好的SNR和CNR.
목적 이용1.5T MR소묘의심구간단역행적체외관상동맥관벽성상정서.방법 대10개저심행관상동맥MR검사.이3D FIESTA서렬행전강지성상,분별선택8통도두부선권、슬관절선권、섭하합관절표면선권행2D SE T1WI, 성상삼수균상동,지후용섭하합관절표면선권,채용384×256화512×512적구진행T1WI.주입대비제후,분별사용불동적NEX행SE T1WI、PDWI화frFSE T2WI.측량전강지근단관벽、관강、전강지주위심외막하적지방결체조직、전강지린근적실간격심기적신호강도,병측량주위공기적신호강도작위배경조성,계산도상적신조비(SNR)화관상동맥관벽대관강적대비조성비(CNR1)급관상동맥관벽대주위심외막하지방결체조직적대비조성비(CNR2).결과 섭하합관절표면선권성상전강지관벽SE T1WI적SNR화CNR1、CNR2명현고우8통도두선권화슬관절선권.384×256구진소득적SE T1WI적SNR화CNR1、CNR2명현고우512×512구진.NEX위3시도상적SNR화CNR1、CNR2최고.결론 선택섭하합관절표면선권、384×256적구진、3개NEX가이득도량호적SNR화CNR.
Objective To get a MR imaging protocol for coronary arterial wall in vitro. Methods MR examinations were performed in 10 fresh porcine hearts. Three dimensional fast imaging employing steady state acquisition (3D FIESTA) was used to delineate left anterior descending artery (LAD), while 2D spin-echo T1W was performed with 8-channel head surface coil, temporomandibular surface coil and knee coil with the same parameters. T1WI was obtained with 384×256 and 512×512 in matrix using temporomandibular surface coil, and then T1WI, PDW and T2WI with fat saturation were obtained with different NEX using temporomandibular surface coil after injecting Resovist in LAD. Signal of the LAD wall, lumen, fat tissue adjacent to LAD, myocardium of anterior part of interventricular septum and noise were respectively measured. Signal-to-noise ratio (SNR) of image, contrast to noise ratio (CNR) between the wall and lumen (CNR1), CNR between the wall and surrounding fatty tissue (CNR2) were calculated. Results The SNR and CNR1, CNR2 of SE T1WI with temporomandibular coil were higher than those with 8-channel head surface coil and knee coil. SNR and CNR1, CNR2 of SE T1WI with 384×256 matrix were higher than those with 512×512 matrix. SNR and CNR1, CNR2 using 3 NEX were the highest. Conclusion Good SNR and CNR of porcine coronary wall can be achieved using temporomandibular surface coil, 384×256 in matrix and NEX of 3.