热加工工艺
熱加工工藝
열가공공예
HOT WORKING TECHNOLOGY
2010年
4期
120-123,127
,共5页
姚生莲%徐国富%李旭%陈蕾
姚生蓮%徐國富%李旭%陳蕾
요생련%서국부%리욱%진뢰
热处理%Ti-12Zr合金%组织%性能
熱處理%Ti-12Zr閤金%組織%性能
열처리%Ti-12Zr합금%조직%성능
heat treat%Ti-12Zr alloy%microstructure%properties
为了对Ti-12Zr合金在牙科的临床使用提供实验及理论依据,借助维氏硬度测量、电化学性能测试和扫描电子显微镜镜(SEM)的观察及X-射线衍射(XRD)的分析,研究了牙用Ti-12Zr合金经200、400、500、600和800℃加热(氧化)处理后合金的表面维氏硬度、形貌、结构及电化学性能.结果表明:经不同热氧化温度处理的Ti-12Zr合金表面能够生成不同厚度的ZrO_2和(Ti,Zr)O _2陶瓷层,其硬度比Ti-12Zr合金基材高;在人工唾液环境中,在500℃以下,随热氧化温度的升高,Ti-12Zr合金表面生成的陶瓷层耐腐蚀性能随着温度的升高而增加,500℃时,腐蚀电位E_(corr)达到最大值(-18mV),抗腐蚀性能最好,超过500℃时,E_(corr)又降低,抗腐蚀性能变差.
為瞭對Ti-12Zr閤金在牙科的臨床使用提供實驗及理論依據,藉助維氏硬度測量、電化學性能測試和掃描電子顯微鏡鏡(SEM)的觀察及X-射線衍射(XRD)的分析,研究瞭牙用Ti-12Zr閤金經200、400、500、600和800℃加熱(氧化)處理後閤金的錶麵維氏硬度、形貌、結構及電化學性能.結果錶明:經不同熱氧化溫度處理的Ti-12Zr閤金錶麵能夠生成不同厚度的ZrO_2和(Ti,Zr)O _2陶瓷層,其硬度比Ti-12Zr閤金基材高;在人工唾液環境中,在500℃以下,隨熱氧化溫度的升高,Ti-12Zr閤金錶麵生成的陶瓷層耐腐蝕性能隨著溫度的升高而增加,500℃時,腐蝕電位E_(corr)達到最大值(-18mV),抗腐蝕性能最好,超過500℃時,E_(corr)又降低,抗腐蝕性能變差.
위료대Ti-12Zr합금재아과적림상사용제공실험급이론의거,차조유씨경도측량、전화학성능측시화소묘전자현미경경(SEM)적관찰급X-사선연사(XRD)적분석,연구료아용Ti-12Zr합금경200、400、500、600화800℃가열(양화)처리후합금적표면유씨경도、형모、결구급전화학성능.결과표명:경불동열양화온도처리적Ti-12Zr합금표면능구생성불동후도적ZrO_2화(Ti,Zr)O _2도자층,기경도비Ti-12Zr합금기재고;재인공타액배경중,재500℃이하,수열양화온도적승고,Ti-12Zr합금표면생성적도자층내부식성능수착온도적승고이증가,500℃시,부식전위E_(corr)체도최대치(-18mV),항부식성능최호,초과500℃시,E_(corr)우강저,항부식성능변차.
The aim is to provide basis of experiment and theory for Ti-12Zr alloy elincal application. After different temperature(200, 400, 500, 600 and 800 ℃)thermal oxidation, the surface hardness were measured by digital micro-hardness tester, the electrochemical corrosion behavior was investigated in artificial saliva by the analysis of polarization curves and the surface morphologies and microstructure of Ti-12Zr alloy for clinical tooth were investigated by SEM and XRD. The results show that: ZrO_2 and(Ti, Zr)O_2ceramic oxide coating produce after different temperature thermal oxidation accordingly.The micro-hardness is higher than Ti-12Zr alloy matrix. In artificial saliva, the electrochemical corrosion behavior of the ZrO_2 and(Ti, Zr)O_2 ceramic oxide coating improves with the increase of thermal oxidation temperature, below 500 ℃. The electrochemical corrosion behavior is best at 500 ℃, then E_(corr) is -18 mV. The electrochemical corrosion behavior reduces and E_(corr) reduced over 500 ℃.