中华创伤骨科杂志
中華創傷骨科雜誌
중화창상골과잡지
CHINESE JOURNAL OF ORTHOPAEDIC TRAUMA
2012年
3期
241-245
,共5页
李宁%刘斌%戎利民%何留民
李寧%劉斌%戎利民%何留民
리저%류빈%융이민%하류민
脊髓损伤%组织支架%骨髓细胞%组织工程
脊髓損傷%組織支架%骨髓細胞%組織工程
척수손상%조직지가%골수세포%조직공정
Spinal cord injuries%Tissue scaffolds%Bone marrow cells%Tissue engineering
目的 探讨静电纺丝聚乳酸聚乙醇酸(PLGA)/聚乙二醇(PEG)共聚物纳米纤维作为组织工程支架的可行性,及其与大鼠骨髓基质干细胞(BMSCs)的体外相容性. 方法 静电纺丝法分别制备PLGA/PEG和PLGA纳米纤维支架,扫描电镜(SEM)观察材料结构;分离培养大鼠BMSCs,取第3代BMSCs分别接种于PLGA/PEG纳米纤维支架和PLGA纳米纤维支架进行培养,噻唑蓝(MTT)法测定其细胞毒性及细胞增殖;接种后2、4、6h血球计数板计数法测定其黏附率;DAPI荧光染色观察细胞核形态;SEM观察细胞和支架的形态、黏附及生长情况. 结果 SEM观察显示两组支架呈相互交联的多孔网状无纺结构.PLGA/PEG组和PLGA组纤维直径分别为(655±57)nm和(539±48)nm;孔隙率分别为86.8%±1.5%和84.7%±1 2%.MTT检测BMSCs在两组支架中生长良好,OD值均随时间延长而增大,两组各时间点比较差异均有统计学意义(P<0 05).各时间段PLGA/PEG组的细胞黏附率明显高于PLGA组,差异均有统计学意义(P<0.05).DAPI染色示各组细胞核形态正常,核质均染,未见明显凋亡及坏死细胞;PLGA/PEG组细胞较PLGA组明显增多.SEM观察显示,PLGA/PEG组BMSCs在支架上生长良好,基质分泌、生长情况优于PLGA组. 结论 采用静电纺丝法制备的PLGA/PEG纳米纤维支架安全无毒,具备合适的孔径和孔隙率,适合BMSCs生长,细胞相容性良好,是一种组织工程良好的支架载体.
目的 探討靜電紡絲聚乳痠聚乙醇痠(PLGA)/聚乙二醇(PEG)共聚物納米纖維作為組織工程支架的可行性,及其與大鼠骨髓基質榦細胞(BMSCs)的體外相容性. 方法 靜電紡絲法分彆製備PLGA/PEG和PLGA納米纖維支架,掃描電鏡(SEM)觀察材料結構;分離培養大鼠BMSCs,取第3代BMSCs分彆接種于PLGA/PEG納米纖維支架和PLGA納米纖維支架進行培養,噻唑藍(MTT)法測定其細胞毒性及細胞增殖;接種後2、4、6h血毬計數闆計數法測定其黏附率;DAPI熒光染色觀察細胞覈形態;SEM觀察細胞和支架的形態、黏附及生長情況. 結果 SEM觀察顯示兩組支架呈相互交聯的多孔網狀無紡結構.PLGA/PEG組和PLGA組纖維直徑分彆為(655±57)nm和(539±48)nm;孔隙率分彆為86.8%±1.5%和84.7%±1 2%.MTT檢測BMSCs在兩組支架中生長良好,OD值均隨時間延長而增大,兩組各時間點比較差異均有統計學意義(P<0 05).各時間段PLGA/PEG組的細胞黏附率明顯高于PLGA組,差異均有統計學意義(P<0.05).DAPI染色示各組細胞覈形態正常,覈質均染,未見明顯凋亡及壞死細胞;PLGA/PEG組細胞較PLGA組明顯增多.SEM觀察顯示,PLGA/PEG組BMSCs在支架上生長良好,基質分泌、生長情況優于PLGA組. 結論 採用靜電紡絲法製備的PLGA/PEG納米纖維支架安全無毒,具備閤適的孔徑和孔隙率,適閤BMSCs生長,細胞相容性良好,是一種組織工程良好的支架載體.
목적 탐토정전방사취유산취을순산(PLGA)/취을이순(PEG)공취물납미섬유작위조직공정지가적가행성,급기여대서골수기질간세포(BMSCs)적체외상용성. 방법 정전방사법분별제비PLGA/PEG화PLGA납미섬유지가,소묘전경(SEM)관찰재료결구;분리배양대서BMSCs,취제3대BMSCs분별접충우PLGA/PEG납미섬유지가화PLGA납미섬유지가진행배양,새서람(MTT)법측정기세포독성급세포증식;접충후2、4、6h혈구계수판계수법측정기점부솔;DAPI형광염색관찰세포핵형태;SEM관찰세포화지가적형태、점부급생장정황. 결과 SEM관찰현시량조지가정상호교련적다공망상무방결구.PLGA/PEG조화PLGA조섬유직경분별위(655±57)nm화(539±48)nm;공극솔분별위86.8%±1.5%화84.7%±1 2%.MTT검측BMSCs재량조지가중생장량호,OD치균수시간연장이증대,량조각시간점비교차이균유통계학의의(P<0 05).각시간단PLGA/PEG조적세포점부솔명현고우PLGA조,차이균유통계학의의(P<0.05).DAPI염색시각조세포핵형태정상,핵질균염,미견명현조망급배사세포;PLGA/PEG조세포교PLGA조명현증다.SEM관찰현시,PLGA/PEG조BMSCs재지가상생장량호,기질분비、생장정황우우PLGA조. 결론 채용정전방사법제비적PLGA/PEG납미섬유지가안전무독,구비합괄적공경화공극솔,괄합BMSCs생장,세포상용성량호,시일충조직공정량호적지가재체.
Objective To study the feasibility of a new type of tissue engineering scaffolds for spinal cord injury made of electrospun poly (lactide-co-glycolide) -polyethylene glycol (PLGA-PEG) nanofiber membrane and its biocompatibility with bone marrow stem cells (BMSCs). Methods Electrostatic spinning was used to prepare porous nanofiber scaffolds of PLGA-PEG and porous nanofiber scaffolds of polylactic glycolic acid (PLGA).The scaffolds were observed by scanning electron microscopy (SEM).BMSCs were separated from male SD rats and cultured.BMSCs of the third passage were seeded and cultured onto the scaffolds made of electrospun PLGA-PEG nanofiber membrane (the experimental group) and the scaffolds made of the electrospun PLGA nanofiber membrane (the control group),respectively.MTT (methyl thiazolyl tetrazolium) method was used to determine the toxicity and proliferation of the cells.The blood corpuscle counting plate was used to measure the adhesion rate 2,4 and 6 hours postinoeulation. DAPI (4'6-diamidino-2-phenylidole) dyeing was used to observe the nucleal morphology.The morphology,adhesion and growth of the cells after co-culture were observed by SEM. Results The scaffolds in the 2 groups had an interconnected porous network structure,with a fiber diameter of 655 ± 57 nm in the experimental group and of 539 ±48 nm in the control group respectively.The pores in the scaffolds were interconnected,with a porosity of 86.8% ± 1.5% and of 84.7% ± 1.2% respectively.MTT detection showed BMSCs grew well in bothgroups and the absorbance (OD) value increased over time with significant between-group differences at differenttime points (P < 0.05).At each time point,the cell adhesion rate was significantly higher in the experimentalgroup than in the control group ( P < 0.05).DAPI fluorescence staining showed normal morphology andquality of the nuclei,no obvious cellular apoptosis or necrosis in both groups,and significantly more cells inthe experimental group.SEM observed that BMSCs grew much better on the scaffolds in the experimentalgroup,proliferating massively and secreting matrix,than those in the control group. ConclusionThe porous nanofiber scaffolds of PLGA / PEG prepared by electrostatic spinning can be a new type of tissueengineering carrier for spinal cord injury research because they are safe,free of toxicity,and suitable forBMSCs growth with fine cyto-compatibility and a proper aperture and porosity.