计算机仿真
計算機倣真
계산궤방진
COMPUTER SIMULATION
2009年
12期
12-15,229
,共5页
模基辨识器%高斯-马尔可夫模型%简正波%扩展卡尔曼滤波器
模基辨識器%高斯-馬爾可伕模型%簡正波%擴展卡爾曼濾波器
모기변식기%고사-마이가부모형%간정파%확전잡이만려파기
Model-based identifier%Gauss-Markov model%Normal mode%Extended kalman filter
在解决海洋中的信号处理问题时,海洋环境的复杂性和多变性严重影响了信号处理系统的性能.为了在信号处理之前辨识出海洋环境参数,并将其融入信号处理框架中,则有希望提高信号处理器的性能.将海洋环境建模为高斯-马尔可夫模型,利用声速梯度数据和由Kraken模型得到的声压场数据,结合扩展卡尔曼滤波器算法,实现了对海洋环境的辨识.利用模基处理方法,简正波传播模型,可以辨识模函数和水平波数,并能估计出基阵所在位置的声压场.仿真数据和模型数据吻合较好,说明算法能够较好地估计海洋环境参数,为滤波、检测、定位、跟踪等应用提供了基础.
在解決海洋中的信號處理問題時,海洋環境的複雜性和多變性嚴重影響瞭信號處理繫統的性能.為瞭在信號處理之前辨識齣海洋環境參數,併將其融入信號處理框架中,則有希望提高信號處理器的性能.將海洋環境建模為高斯-馬爾可伕模型,利用聲速梯度數據和由Kraken模型得到的聲壓場數據,結閤擴展卡爾曼濾波器算法,實現瞭對海洋環境的辨識.利用模基處理方法,簡正波傳播模型,可以辨識模函數和水平波數,併能估計齣基陣所在位置的聲壓場.倣真數據和模型數據吻閤較好,說明算法能夠較好地估計海洋環境參數,為濾波、檢測、定位、跟蹤等應用提供瞭基礎.
재해결해양중적신호처리문제시,해양배경적복잡성화다변성엄중영향료신호처리계통적성능.위료재신호처리지전변식출해양배경삼수,병장기융입신호처리광가중,칙유희망제고신호처리기적성능.장해양배경건모위고사-마이가부모형,이용성속제도수거화유Kraken모형득도적성압장수거,결합확전잡이만려파기산법,실현료대해양배경적변식.이용모기처리방법,간정파전파모형,가이변식모함수화수평파수,병능고계출기진소재위치적성압장.방진수거화모형수거문합교호,설명산법능구교호지고계해양배경삼수,위려파、검측、정위、근종등응용제공료기출.
The complexity and inconstancy of the ocean environment lead to seriously degrade the performance of signal processing system. If ocean environment parameters can be identified before signal processing and then incor-porated into signal processing schemes, it is contemplated to improve overall processor performance. In this paper o-cean environment was modeled as a Gauss-Markov process. According to the sound velocity profile and the pressure field derived from the Kraken model, extended Kalman filter algorithm was used to perform ocean environment identi-fication. By this approach, the modal functions and the horizontal wavenumbers can be identified based on a normal mode propngation model, and the pressure field at the receiver array can be estimated. Simulation results and model data were found to to be consistent, which indicates the well performance of the algorithm, thus providing a basis for the enhancement, detection, localization and tracking.