海南师范学院学报(自然科学版)
海南師範學院學報(自然科學版)
해남사범학원학보(자연과학판)
JOURNAL OF HAINAN NORMAL UNIVERSITY
2001年
1期
1-6
,共6页
A=(aij)表示→m×n阶矩阵。可把偏序集PA和A自然联系起来。用X={x1,x2,…xn|和y={y1,y2,…yn}表示不交的m和n元集,定义xi<yj当且仅当aij≠0。PA的Hasse图就是通常A的二部图,其中ysxs的上面。称PA为二部偏序集。偏序集PA的跳跃[阶梯]数是最小[最大]跳跃[阶梯]的数目。(PA的线性扩张中的一个跳跃是PA中一对不可比较的元素,否则称为阶梯)。文章主要研究了二部偏序集的跳跃数和其Hasse图结构的关系,并给出一个确定PA阶梯数的递归算法。
A=(aij)錶示→m×n階矩陣。可把偏序集PA和A自然聯繫起來。用X={x1,x2,…xn|和y={y1,y2,…yn}錶示不交的m和n元集,定義xi<yj噹且僅噹aij≠0。PA的Hasse圖就是通常A的二部圖,其中ysxs的上麵。稱PA為二部偏序集。偏序集PA的跳躍[階梯]數是最小[最大]跳躍[階梯]的數目。(PA的線性擴張中的一箇跳躍是PA中一對不可比較的元素,否則稱為階梯)。文章主要研究瞭二部偏序集的跳躍數和其Hasse圖結構的關繫,併給齣一箇確定PA階梯數的遞歸算法。
A=(aij)표시→m×n계구진。가파편서집PA화A자연련계기래。용X={x1,x2,…xn|화y={y1,y2,…yn}표시불교적m화n원집,정의xi<yj당차부당aij≠0。PA적Hasse도취시통상A적이부도,기중ysxs적상면。칭PA위이부편서집。편서집PA적도약[계제]수시최소[최대]도약[계제]적수목。(PA적선성확장중적일개도약시PA중일대불가비교적원소,부칙칭위계제)。문장주요연구료이부편서집적도약수화기Hasse도결구적관계,병급출일개학정PA계제수적체귀산법。
Let A = (αij)heanm×nmatrix. There is a natural way to associate a poset PA with A .Let X = {x1,x2, ,xm|and Y = {y1,y2,…yn| be disjoint sets of m andn elements, respectively, and define xi < yj if and only if αij ≠0. The Hasse diagram of poset PA is the usual bipartite graph of A with vertex set X U Y drawn with the y′s above the x′s, and PA is called a bipartite poset. The jump [stair]number of a poset is the minimum [rnaximum]number of junps [stairs]in any linear extension of PA . (A jump in a linear extension of PA is a pair of consecutive dements which are incoomparable in PA , otherwise, we call it a stair of PA . ) In this paper, we investigate the jump number of bipartite poset and its relation to the Hasse diagram structure. We give a recursive algorithm to determine the stair number of PA which is motivated by consideration of the Hasse cliagram of PA .