目的 探讨双源CT双能量头部虚拟平扫(VNC)的图像质量和临床应用价值.方法 对62例临床怀疑脑血管病变的患者,使用双源CT进行头部常规平扫(CNC)和双能量CTA检查,利用双能量软件得到VNC图像.比较CNC和VNC图像灰质、白质、脑脊液、高密度出血性和低密度缺血性病变的CT值,使用4分法对图像质量进行主观评价,比较两组图像的噪声、辐射剂量和病变检出率,使用配对t检验、Wilcoxon符号秩检验和χ2检验(McNemar检验和Kappa检验)进行统计分析.结果 CNC与VNC图像灰质、白质、脑脊液、高密度病变及低密度病变的CT值分别为[(43.3±1.5)和(33.2±1.3)HU,t=46.98]、[(32.9±1.3)和(28.8±1.6)HU,t=16.28]、[(9.0±1.4)和(5.3±1.9)HU,t=12.41]、[(62.8±10.0)和(51.3±11.5)HU,Z=-4.37]、[(20.7±4.7)和(18.0±6.9)HU,t=3.84],差异均有统计学意义(P值均<0.01).VNC图像噪声[(1.63±0.34)HU]大于CNC图像[(0.99±0.18)HU](Z=-6.41,P<0.01).VNC图像有效剂量[(0.53±0.08)mSv]低于CNC[(1.37±0.23)mSv](Z=-6.45,P<0.01).CNC和VNC图像噪声、颅底伪影、灰白质对比、高密度和低密度病变显示的主观评分分别为(3.9±0.3)和(2.7±0.5)分、(3.7±0.5)和(2.4±0.9)分、(3.3±0.6)和(1.3±0.5)分、(4.0±0.0)和(3.0±0.4)分、(3.9±0.3)和(3.2±0.8)分,VNC图像噪声与颅底伪影的评分较CNC图像低(Z值分别为-6.84、-6.15,P值均<0.01),灰白质对比、高密度和低密度病变显示低于CNC图像(Z值分别为-7.01、-4.52和-3.12,P值均<0.01).在个体水平,VNC图像显示高密度出血性病变29例,无假阳性和假阴性病例,敏感性、特异性、阳性预测值和阴性预测值均为100.0%(29/29、33/33、29/29、33/33),与CNC一致(P>0.05,Kappa值=1.000);VNC图像显示低密度缺血性病变22例,假阳性1例,假阴性2例,敏感性、特异性、阳性预测值和阴性预测值分别为91.3%(21/23)、97.4%(38/39)、95.5%(21/22)和95.0%(38/40),与CNC图像(23例)差异无统计学意义(χ2=0.00,P>0.05,Kappa值=0.895).在病灶水平,VNC图像显示出血灶53个,假阴性4个,无假阳性,敏感性、特异性、阳性预测值和阴性预测值分别为93.0%(53/57)、100.0%(38/38)、100.0%(53/53)和90.5%(38/42),VNC图像对出血灶的显示率与CNC差异无统计学意义(χ2=2.25,P>0.05,Kappa值=0.914);VNC图像显示低密度病灶38个,假阳性2个,假阴性13个,敏感性、特异性、阳性预测值和阴性预测值分别为73.5%(36/49)、96.4%(53/55)、94.7%(36/38)和80.3%(53/66),VNC图像对低密度病灶的显示率低于CNC(χ2=6.67,P<0.01,Kappa值=0.707).结论 与CNC相比,头部VNC辐射剂量低,但图像质量下降,对出血性病变具有替代CNC的潜在使用价值,对缺血性病变也有一定的参考价值.
目的 探討雙源CT雙能量頭部虛擬平掃(VNC)的圖像質量和臨床應用價值.方法 對62例臨床懷疑腦血管病變的患者,使用雙源CT進行頭部常規平掃(CNC)和雙能量CTA檢查,利用雙能量軟件得到VNC圖像.比較CNC和VNC圖像灰質、白質、腦脊液、高密度齣血性和低密度缺血性病變的CT值,使用4分法對圖像質量進行主觀評價,比較兩組圖像的譟聲、輻射劑量和病變檢齣率,使用配對t檢驗、Wilcoxon符號秩檢驗和χ2檢驗(McNemar檢驗和Kappa檢驗)進行統計分析.結果 CNC與VNC圖像灰質、白質、腦脊液、高密度病變及低密度病變的CT值分彆為[(43.3±1.5)和(33.2±1.3)HU,t=46.98]、[(32.9±1.3)和(28.8±1.6)HU,t=16.28]、[(9.0±1.4)和(5.3±1.9)HU,t=12.41]、[(62.8±10.0)和(51.3±11.5)HU,Z=-4.37]、[(20.7±4.7)和(18.0±6.9)HU,t=3.84],差異均有統計學意義(P值均<0.01).VNC圖像譟聲[(1.63±0.34)HU]大于CNC圖像[(0.99±0.18)HU](Z=-6.41,P<0.01).VNC圖像有效劑量[(0.53±0.08)mSv]低于CNC[(1.37±0.23)mSv](Z=-6.45,P<0.01).CNC和VNC圖像譟聲、顱底偽影、灰白質對比、高密度和低密度病變顯示的主觀評分分彆為(3.9±0.3)和(2.7±0.5)分、(3.7±0.5)和(2.4±0.9)分、(3.3±0.6)和(1.3±0.5)分、(4.0±0.0)和(3.0±0.4)分、(3.9±0.3)和(3.2±0.8)分,VNC圖像譟聲與顱底偽影的評分較CNC圖像低(Z值分彆為-6.84、-6.15,P值均<0.01),灰白質對比、高密度和低密度病變顯示低于CNC圖像(Z值分彆為-7.01、-4.52和-3.12,P值均<0.01).在箇體水平,VNC圖像顯示高密度齣血性病變29例,無假暘性和假陰性病例,敏感性、特異性、暘性預測值和陰性預測值均為100.0%(29/29、33/33、29/29、33/33),與CNC一緻(P>0.05,Kappa值=1.000);VNC圖像顯示低密度缺血性病變22例,假暘性1例,假陰性2例,敏感性、特異性、暘性預測值和陰性預測值分彆為91.3%(21/23)、97.4%(38/39)、95.5%(21/22)和95.0%(38/40),與CNC圖像(23例)差異無統計學意義(χ2=0.00,P>0.05,Kappa值=0.895).在病竈水平,VNC圖像顯示齣血竈53箇,假陰性4箇,無假暘性,敏感性、特異性、暘性預測值和陰性預測值分彆為93.0%(53/57)、100.0%(38/38)、100.0%(53/53)和90.5%(38/42),VNC圖像對齣血竈的顯示率與CNC差異無統計學意義(χ2=2.25,P>0.05,Kappa值=0.914);VNC圖像顯示低密度病竈38箇,假暘性2箇,假陰性13箇,敏感性、特異性、暘性預測值和陰性預測值分彆為73.5%(36/49)、96.4%(53/55)、94.7%(36/38)和80.3%(53/66),VNC圖像對低密度病竈的顯示率低于CNC(χ2=6.67,P<0.01,Kappa值=0.707).結論 與CNC相比,頭部VNC輻射劑量低,但圖像質量下降,對齣血性病變具有替代CNC的潛在使用價值,對缺血性病變也有一定的參攷價值.
목적 탐토쌍원CT쌍능량두부허의평소(VNC)적도상질량화림상응용개치.방법 대62례림상부의뇌혈관병변적환자,사용쌍원CT진행두부상규평소(CNC)화쌍능량CTA검사,이용쌍능량연건득도VNC도상.비교CNC화VNC도상회질、백질、뇌척액、고밀도출혈성화저밀도결혈성병변적CT치,사용4분법대도상질량진행주관평개,비교량조도상적조성、복사제량화병변검출솔,사용배대t검험、Wilcoxon부호질검험화χ2검험(McNemar검험화Kappa검험)진행통계분석.결과 CNC여VNC도상회질、백질、뇌척액、고밀도병변급저밀도병변적CT치분별위[(43.3±1.5)화(33.2±1.3)HU,t=46.98]、[(32.9±1.3)화(28.8±1.6)HU,t=16.28]、[(9.0±1.4)화(5.3±1.9)HU,t=12.41]、[(62.8±10.0)화(51.3±11.5)HU,Z=-4.37]、[(20.7±4.7)화(18.0±6.9)HU,t=3.84],차이균유통계학의의(P치균<0.01).VNC도상조성[(1.63±0.34)HU]대우CNC도상[(0.99±0.18)HU](Z=-6.41,P<0.01).VNC도상유효제량[(0.53±0.08)mSv]저우CNC[(1.37±0.23)mSv](Z=-6.45,P<0.01).CNC화VNC도상조성、로저위영、회백질대비、고밀도화저밀도병변현시적주관평분분별위(3.9±0.3)화(2.7±0.5)분、(3.7±0.5)화(2.4±0.9)분、(3.3±0.6)화(1.3±0.5)분、(4.0±0.0)화(3.0±0.4)분、(3.9±0.3)화(3.2±0.8)분,VNC도상조성여로저위영적평분교CNC도상저(Z치분별위-6.84、-6.15,P치균<0.01),회백질대비、고밀도화저밀도병변현시저우CNC도상(Z치분별위-7.01、-4.52화-3.12,P치균<0.01).재개체수평,VNC도상현시고밀도출혈성병변29례,무가양성화가음성병례,민감성、특이성、양성예측치화음성예측치균위100.0%(29/29、33/33、29/29、33/33),여CNC일치(P>0.05,Kappa치=1.000);VNC도상현시저밀도결혈성병변22례,가양성1례,가음성2례,민감성、특이성、양성예측치화음성예측치분별위91.3%(21/23)、97.4%(38/39)、95.5%(21/22)화95.0%(38/40),여CNC도상(23례)차이무통계학의의(χ2=0.00,P>0.05,Kappa치=0.895).재병조수평,VNC도상현시출혈조53개,가음성4개,무가양성,민감성、특이성、양성예측치화음성예측치분별위93.0%(53/57)、100.0%(38/38)、100.0%(53/53)화90.5%(38/42),VNC도상대출혈조적현시솔여CNC차이무통계학의의(χ2=2.25,P>0.05,Kappa치=0.914);VNC도상현시저밀도병조38개,가양성2개,가음성13개,민감성、특이성、양성예측치화음성예측치분별위73.5%(36/49)、96.4%(53/55)、94.7%(36/38)화80.3%(53/66),VNC도상대저밀도병조적현시솔저우CNC(χ2=6.67,P<0.01,Kappa치=0.707).결론 여CNC상비,두부VNC복사제량저,단도상질량하강,대출혈성병변구유체대CNC적잠재사용개치,대결혈성병변야유일정적삼고개치.
Objective To investigate image quality and clinical value of dual-source dual energy virtual non-contrast (VNC) CT of the head. Methods Sixty-two patients suspected of cerebrovascular diseases underwent conventional non-contrast (CNC) CT and dual energy CTA examination of the head with dual-source CT. Virtual non-contrast images were reconstructed using dual energy software. The CT values of gray matter, white matter, cerebrospinal fluid, hyperdense hemorrhagic lesion and hypodense ischemic lesion were compared between CNC and VNC images. A four-score scale was used to assess image quality subjectively. Image noise, radiation dosage and detection rate were compared between CNC and VNC images. Paired t test, Wilcoxon signed ranks test and Chi-square test (McNemar test and Kappa test) were used. Results The CT value on CNC and VNC images, were (43. 3 ± 1.5) and (33. 2 ± 1.3) HU for gray matter (t = 46.98, P < 0. 01), (32. 9 ± 1.3) and (28.8 ± 1.6) HU for white matter(t = 16. 28, P <0.01), (9.0 ± 1.4) and (5.3 ± 1.9) HU for cerebrospinal fluid (t=12.41, P<0.01),(62.8 ±10.0) and (51.3 ± 11.5) HU for hyperdense lesion (Z = -4.37, P < 0.01), (20.7 ±4.7) and (18.0 ±6. 9) HU for hypodense lesion (t = 3. 84, P < 0. 01), respectively. VNC images[(1.63 ±0.34) HU]had more noise than CNC images[(0.99±0.18) HU](Z= -6.41, P<0.01). VNC [(0. 53 ± 0. 08) mSv]had less effective dose than CNC[(1.37 ± 0. 23) mSy](Z= - 6. 45, P < 0. 01).In subjective assessment, VNC images had more noise (2. 7 ± 0. 5 for VNC and 3.9 ± 0. 3 for CNC,Z = -6. 84, P < 0. 01) and skull base-related artifacts (2. 4 ± 0. 9 for VNC and 3.7 ± 0. 5 for CNC,Z = -6. 15, P <0. 01) than CNC images. The gray/white matter contrast (1.3 ± 0. 5 for VNC and 3.3 ±0. 6 for CNC, Z = - 7. 01, P < 0. 01), hyperdense lesion display (3.0 ± 0. 4 for VNC and 4. 0 ± 0. 0 for CNC,Z = -4. 52, P < 0. 01) and hypodense lesion display (3.2 ± 0. 8 for VNC and 3.9 ± 0. 3 for CNC,Z= -3. 12, P <0. 01) on VNC images were lower than those on CNC images. In per-patient analysis,29 cases of hyperdense lesion (hemorrhage) were found on VNC images without misdiagnosis. The sensitivity, specificity, positive predictive value and negative predictive value were all 100. 0% (29/29,33/33, 29/29, 33/33). VNC images had the same detection rate of hyperdense lesions as CNC images (P >0. 05, Kappa = 1. 000) at per-patient level. Twenty-two patients with hypodense ischemic lesions were found on VNC images with one false positive case and two false negative cases. The sensitivity,specificity, positive predictive value and negative predictive value were 91.3% (21/23), 97.4%(38/39), 95.5% (21/22) and 95.0% (38/40) respectively. No statistical difference was found in detecting hypodense lesions between VNC and CNC images (χ2 = 0. 00, P > 0. 05, Kappa = 0. 895). In per-lesion analysis, 53 hemorrhage lesions were found on VNC images with false negative results of four lesions and no false positive result. The sensitivity, specificity, positive predictive value and negative predictive value were 93.0% (53/57), 100. 0% (38/38), 100. 0% (53/53) and 90. 5% (38/42)respectively. There was no significant difference in detection rate of hyperdense lesion between VNC and CNC images (χ2 =2. 25, P >0. 05, Kappa =0. 914). Thirty-eight hypodense lesions were found on VNC images with 2 false positive lesions and 13 false negative lesions. The sensitivity, specificity, positive predictive value and negative predictive value were 73.5% (36/49), 96.4% (53/55), 94. 7% (36/38)and 80. 3% (53/66) respectively. The detection rate of hypodense lesion on VNC images was lower than that on CNC images (χ2 = 6. 67 ,P < 0.01, Kappa = 0. 707). Conclusion Compared with CNC images,head VNC images have reduced image quality and radiation dosage. VNC images can replace CNC images potentially in detecting intracranial hemorrhage and provide information for ischemic cerebrovascular diseases to some extent.