电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2010年
3期
509-514
,共6页
数据处理%聚类分析%近邻传播聚类%可变相似性度b量%流形分析
數據處理%聚類分析%近鄰傳播聚類%可變相似性度b量%流形分析
수거처리%취류분석%근린전파취류%가변상사성도b량%류형분석
Data processing%Cluster analysis%Affinity Propagation (AP) clustering%Variable-similarity measure%Manifold analysis
近邻传播(AP)聚类算法面临的一个问题是不适用于多重尺度及任意空间形状的数据聚类处理.该文从数据分布特性的表征出发,提出了一种改进的近邻传播聚类算法AP-VSM (Affinity Propagation based on Variable-Similarity Measure).首先,综合数据的全局与局部分布特性,设计了一种数据可变相似性度量计算方法,该度量可以有效地反映数据实际聚类的分布特性;然后在传统AP算法框架基础上,构造出基于可变相似性度量的近邻传播聚类算法,从而拓展了传统AP算法的数据处理能力.仿真实验验证了新方法性能优于传统AP算法.
近鄰傳播(AP)聚類算法麵臨的一箇問題是不適用于多重呎度及任意空間形狀的數據聚類處理.該文從數據分佈特性的錶徵齣髮,提齣瞭一種改進的近鄰傳播聚類算法AP-VSM (Affinity Propagation based on Variable-Similarity Measure).首先,綜閤數據的全跼與跼部分佈特性,設計瞭一種數據可變相似性度量計算方法,該度量可以有效地反映數據實際聚類的分佈特性;然後在傳統AP算法框架基礎上,構造齣基于可變相似性度量的近鄰傳播聚類算法,從而拓展瞭傳統AP算法的數據處理能力.倣真實驗驗證瞭新方法性能優于傳統AP算法.
근린전파(AP)취류산법면림적일개문제시불괄용우다중척도급임의공간형상적수거취류처리.해문종수거분포특성적표정출발,제출료일충개진적근린전파취류산법AP-VSM (Affinity Propagation based on Variable-Similarity Measure).수선,종합수거적전국여국부분포특성,설계료일충수거가변상사성도량계산방법,해도량가이유효지반영수거실제취류적분포특성;연후재전통AP산법광가기출상,구조출기우가변상사성도량적근린전파취류산법,종이탁전료전통AP산법적수거처리능력.방진실험험증료신방법성능우우전통AP산법.
Affinity Propagation (AP) clustering is not fit to deal with multi-scale data cluster as well as the arbitrary shape cluster issue. Therefore, an improved affinity propagation clustering algorithm AP-VSM (Affinity Propagation based on Variable-Similarity Measure) is proposed embarking from the token of data distribution characters. First, a kind of variable-similarity measure method is devised according of characters of global and local data distribution, which has the ability of describing the characters of data clustering effectively. Then AP-VSM clustering algorithm is proposed base on the frame of traditional AP algorithm, and this method has extended data processing capacity compared with traditional AP. The simulation results show that the new method is outperforming traditional AP algorithm.