物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2011年
6期
1493-1500
,共8页
叶同奇%张朝霞%徐勇%颜世志%朱九方%刘勇%李全新
葉同奇%張朝霞%徐勇%顏世誌%硃九方%劉勇%李全新
협동기%장조하%서용%안세지%주구방%류용%리전신
生物质%生物质合成气%高醇%ASF分布%CuCoMnNa催化剂
生物質%生物質閤成氣%高醇%ASF分佈%CuCoMnNa催化劑
생물질%생물질합성기%고순%ASF분포%CuCoMnNa최화제
Biomass%Bio-syngas%Higher alcohol%ASF distribution%CuCoMnNa catalyst
研究钠促进的CuCoMn催化剂的特性及其在生物质气化合成气合成高醇中的应用.研究了催化剂中Na含量及合成条件(温度、压力和空速)对生物质基合成气合成高醇性能的影响.发现CuCoMnNa0.1催化剂较适合高醇合成,在300℃以下,随着温度的上升,碳转化率增大,而醇选择性降低.压力的增加有利于醇的合成,增大空速会明显降低碳转化率,但醇时空产率则因转换频率的增加而增大.在所考察的范围内,醇产率最高达到304.6 g·kg-1·h-1,其中C2+高醇(C2-C6醇)占64.4%(w,质量分数).醇产物和烃产物均符合ASF(Anderson-Schulz-Flory)分布关系.根据催化剂性能与表征分析,Na的加入有利于提高生物质气化合成气合成高醇的选择性和活性元素Cu、Co的分散性.X射线光电子谱(XPS)测试结果显示反应后的催化剂表面上,Cu以Cu+和Cu0的混合形式存在,而Co则是Co2+/Co3+和Co0的混合物.增加Na的含量,Cu0/Cu+比率和Co0的强度均随之减小.
研究鈉促進的CuCoMn催化劑的特性及其在生物質氣化閤成氣閤成高醇中的應用.研究瞭催化劑中Na含量及閤成條件(溫度、壓力和空速)對生物質基閤成氣閤成高醇性能的影響.髮現CuCoMnNa0.1催化劑較適閤高醇閤成,在300℃以下,隨著溫度的上升,碳轉化率增大,而醇選擇性降低.壓力的增加有利于醇的閤成,增大空速會明顯降低碳轉化率,但醇時空產率則因轉換頻率的增加而增大.在所攷察的範圍內,醇產率最高達到304.6 g·kg-1·h-1,其中C2+高醇(C2-C6醇)佔64.4%(w,質量分數).醇產物和烴產物均符閤ASF(Anderson-Schulz-Flory)分佈關繫.根據催化劑性能與錶徵分析,Na的加入有利于提高生物質氣化閤成氣閤成高醇的選擇性和活性元素Cu、Co的分散性.X射線光電子譜(XPS)測試結果顯示反應後的催化劑錶麵上,Cu以Cu+和Cu0的混閤形式存在,而Co則是Co2+/Co3+和Co0的混閤物.增加Na的含量,Cu0/Cu+比率和Co0的彊度均隨之減小.
연구납촉진적CuCoMn최화제적특성급기재생물질기화합성기합성고순중적응용.연구료최화제중Na함량급합성조건(온도、압력화공속)대생물질기합성기합성고순성능적영향.발현CuCoMnNa0.1최화제교괄합고순합성,재300℃이하,수착온도적상승,탄전화솔증대,이순선택성강저.압력적증가유리우순적합성,증대공속회명현강저탄전화솔,단순시공산솔칙인전환빈솔적증가이증대.재소고찰적범위내,순산솔최고체도304.6 g·kg-1·h-1,기중C2+고순(C2-C6순)점64.4%(w,질량분수).순산물화경산물균부합ASF(Anderson-Schulz-Flory)분포관계.근거최화제성능여표정분석,Na적가입유리우제고생물질기화합성기합성고순적선택성화활성원소Cu、Co적분산성.X사선광전자보(XPS)측시결과현시반응후적최화제표면상,Cu이Cu+화Cu0적혼합형식존재,이Co칙시Co2+/Co3+화Co0적혼합물.증가Na적함량,Cu0/Cu+비솔화Co0적강도균수지감소.
Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas, which was derived from biomass gasification. The influence of Na content and synthesis conditions (temperature, pressure, and gas hourly space velocity (GHSV)) on higher alcohol synthesis was investigated. The CuCoMnNa0.1 catalyst gave the best performance for higher alcohol synthesis. Carbon conversion increased significantly with an increase in temperature at lower than 300 ℃ but alcohol selectivity showed an opposite trend. A higher pressure was found to be beneficial for higher alcohol synthesis. Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols. The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g · kg-1 · h-1 with the C2+ alcohols (C2-C6 higher alcohols) of 64.4% (w, mass fraction) under the conditions used. The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory (ASF) plots. Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements, copper and cobalt. X-ray photoelectron spectroscopy (XPS) results suggested that Cu was present as a mixture of Cu+ and Cu0 on the catalyst's surface after use and Co was present as a mixture of Co2+/Co3+ and Co0. With an increase in sodium addition the Cu0/Cu+ ratio and the Co0 intensity both decreased.