吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2010年
2期
251-255
,共5页
唐阔%胡国圣%车喜龙%胡亮
唐闊%鬍國聖%車喜龍%鬍亮
당활%호국골%차희룡%호량
网格负载预测%支持向量回归%遗传算法
網格負載預測%支持嚮量迴歸%遺傳算法
망격부재예측%지지향량회귀%유전산법
grid host load prediction%support vector regression%genetic algorithm
提出一种基于遗传算法优化支持向量回归机的模型进行网格负载预测,使用遗传算法和交叉验证技术解决了支持向量回归机参数难以确定的问题. 标准数据集仿真实验结果表明,该模型与试验法定参的支持向量回归机和BP神经网络相比具有更优的预测性能.
提齣一種基于遺傳算法優化支持嚮量迴歸機的模型進行網格負載預測,使用遺傳算法和交扠驗證技術解決瞭支持嚮量迴歸機參數難以確定的問題. 標準數據集倣真實驗結果錶明,該模型與試驗法定參的支持嚮量迴歸機和BP神經網絡相比具有更優的預測性能.
제출일충기우유전산법우화지지향량회귀궤적모형진행망격부재예측,사용유전산법화교차험증기술해결료지지향량회귀궤삼수난이학정적문제. 표준수거집방진실험결과표명,해모형여시험법정삼적지지향량회귀궤화BP신경망락상비구유경우적예측성능.
A support vector regression optimized by genetic algorithm model was developed for grid host load prediction. Genetic algorithm and cross validation technology were applied to solve parameter optimization of support vector regression. Simulation experiments were performed on benchmark data set. Experimental results indicate that the proposed model exhibits better performance than support vector regression model with parameters selected by trial-and-error method and the back-propagation neural network.