眼视光学杂志
眼視光學雜誌
안시광학잡지
CHINESE JOURNAL OF OPTOMEY & OPHTHALMOLOGY
2005年
1期
1-6
,共6页
屈光,眼%视力%有效眼模式
屈光,眼%視力%有效眼模式
굴광,안%시력%유효안모식
refractive,occular%visual%effective eye model
目的:人眼的屈光状态可由一新理论来分析,此理论基于几种不同眼生长部位的比值与实验值比较的结果.方法:由光学成像理论可知,眼系统屈光状态可由眼轴长(L),主平面(L2)及角膜及晶状体有效焦距(f1,f2)、曲率(r1,r2,R1,R2)及两者有效距离(S)来表示.比值C1=X/f1,X/f2,L/r1,L/R1的理论值符合实验值.本研究同时介绍一种有效眼模式(EEM),其由X,C1及C2来描述.结果:在正视态时,(C1,C2)=(0.59,0.29),(L/r1,L/R1)=(3.08,2.3),(E1,E2)=(0.71,0.29).在标准范围内,各值为(单位:mm),f1=(29-34),f2=(60-64),S=(5.0-6.5).本理论求得L·=(22-25),而比值C1=(0.56-0.6),C2=(0.27-0.31);L/r1=(2.8-3.3),L/R1=(2.1-2.5);E1=S/(f1-S)=(0.65-0.75),E2=S/f2=(0.27-0.32).本研究理论值L/r1符合Hong等人所测的实验值(2.75-3.28).结论:人眼的发展可由本研究理论统一描述,EEM含C1,C2,E1,E2四个比值,可用来预测人眼最有可能的生长趋势(正视及非正视态).
目的:人眼的屈光狀態可由一新理論來分析,此理論基于幾種不同眼生長部位的比值與實驗值比較的結果.方法:由光學成像理論可知,眼繫統屈光狀態可由眼軸長(L),主平麵(L2)及角膜及晶狀體有效焦距(f1,f2)、麯率(r1,r2,R1,R2)及兩者有效距離(S)來錶示.比值C1=X/f1,X/f2,L/r1,L/R1的理論值符閤實驗值.本研究同時介紹一種有效眼模式(EEM),其由X,C1及C2來描述.結果:在正視態時,(C1,C2)=(0.59,0.29),(L/r1,L/R1)=(3.08,2.3),(E1,E2)=(0.71,0.29).在標準範圍內,各值為(單位:mm),f1=(29-34),f2=(60-64),S=(5.0-6.5).本理論求得L·=(22-25),而比值C1=(0.56-0.6),C2=(0.27-0.31);L/r1=(2.8-3.3),L/R1=(2.1-2.5);E1=S/(f1-S)=(0.65-0.75),E2=S/f2=(0.27-0.32).本研究理論值L/r1符閤Hong等人所測的實驗值(2.75-3.28).結論:人眼的髮展可由本研究理論統一描述,EEM含C1,C2,E1,E2四箇比值,可用來預測人眼最有可能的生長趨勢(正視及非正視態).
목적:인안적굴광상태가유일신이론래분석,차이론기우궤충불동안생장부위적비치여실험치비교적결과.방법:유광학성상이론가지,안계통굴광상태가유안축장(L),주평면(L2)급각막급정상체유효초거(f1,f2)、곡솔(r1,r2,R1,R2)급량자유효거리(S)래표시.비치C1=X/f1,X/f2,L/r1,L/R1적이론치부합실험치.본연구동시개소일충유효안모식(EEM),기유X,C1급C2래묘술.결과:재정시태시,(C1,C2)=(0.59,0.29),(L/r1,L/R1)=(3.08,2.3),(E1,E2)=(0.71,0.29).재표준범위내,각치위(단위:mm),f1=(29-34),f2=(60-64),S=(5.0-6.5).본이론구득L·=(22-25),이비치C1=(0.56-0.6),C2=(0.27-0.31);L/r1=(2.8-3.3),L/R1=(2.1-2.5);E1=S/(f1-S)=(0.65-0.75),E2=S/f2=(0.27-0.32).본연구이론치L/r1부합Hong등인소측적실험치(2.75-3.28).결론:인안적발전가유본연구이론통일묘술,EEM함C1,C2,E1,E2사개비치,가용래예측인안최유가능적생장추세(정시급비정시태).
Objective:Introduce a new theory for the refractive states of human eye based on various ocular components ratios and compared with measured data.Methods:By optical image theory,the refraction state(D) is related to the globe axial length(L),principal plane location and the effective cornea and lens focal length(f1,f2) defined by anterior radii of curvature of cornea(r1) and lens(R2) and effective anterior chamber(S). We also introduce an effective eye model(EEM) characterized by an effective vitreous length(X=L-S-aT). The generalized refractive state equation for both the new ratios of (C1=X/f1,C2=X/f2) and the conventional ratio of (L/r1,L/R1),are derived and compared with measurements.Results:Emmetropic state is governed by a set of typical ratios (C1,C2)=(0.59,0.29),(L/r1,L/R1)=(3.08,2.3) and (E1,E2)=(0.71,0.29) where the axial length equals to a balanced value of L·. For typical range of (all in mm):f1=(29-34),f2=(60-64),S=(5.0-6.5),we obtain L·=(22-25) and the ratios ranges:C1=(0.56-0.6),C2=(0.27-0.31);L/r1=(2.8-3.3),L/R1=(2.1-2.5);E1=S/(f1-S)=(0.65-0.75),E2=S/f2=(0.27-0.32). Our calculated range of L/r1 are consistent with the measured data (2.75-3.27) of Hong,Grosvenor (3.0) at emmetropic state,and Carney et al (3.15-3.38) for myopic states.Conclusion:Development strategies of human eye may be described by our unified theory governed by four ratios:C1,C2,E1 and E2 which are best described by an EEM. It is possible to predict the most likely growth strategies based on the above ratios as cut-off predictors for both emmetropic and ametropic states.