精密成形工程
精密成形工程
정밀성형공정
METAL FORMING TECHNOLOGY
2012年
2期
1-5
,共5页
陶琳%程明%宋广胜%张士宏
陶琳%程明%宋廣勝%張士宏
도림%정명%송엄성%장사굉
Inconel%625合金%加工硬化率%动态再结晶%临界应变
Inconel%625閤金%加工硬化率%動態再結晶%臨界應變
Inconel%625합금%가공경화솔%동태재결정%림계응변
Inconel 625 alloy%work hardening rate%dynamic recrystallization%critical strain
通过等温热压缩试验获得Inconel625合金在变形温度为1000~1200℃,应变速率为1~80S^-1条件下的真应力-应变曲线,利用加工硬化率,结合lnθ-ε曲线上的拐点判据及-δ(1nθ)/δε-ε曲线上的最小值,来研究Inconel625合金动态再结晶的临界条件。结果表明,在该实验条件下,Inconel625合金的lnθε曲线均出现拐点特征,对应的-δ(lnθ)/δε-ε曲线出现最小值,该最小值处对应的应变即为临界应变;临界应变随应变速率的增大和变形温度的降低而增加,并且临界应变和峰值应变之间有一定的关系,即εc=0.69εp;动态再结晶时临界应变的预测模型可以表示为εc=4.41×10^-4Z^0.14261。
通過等溫熱壓縮試驗穫得Inconel625閤金在變形溫度為1000~1200℃,應變速率為1~80S^-1條件下的真應力-應變麯線,利用加工硬化率,結閤lnθ-ε麯線上的枴點判據及-δ(1nθ)/δε-ε麯線上的最小值,來研究Inconel625閤金動態再結晶的臨界條件。結果錶明,在該實驗條件下,Inconel625閤金的lnθε麯線均齣現枴點特徵,對應的-δ(lnθ)/δε-ε麯線齣現最小值,該最小值處對應的應變即為臨界應變;臨界應變隨應變速率的增大和變形溫度的降低而增加,併且臨界應變和峰值應變之間有一定的關繫,即εc=0.69εp;動態再結晶時臨界應變的預測模型可以錶示為εc=4.41×10^-4Z^0.14261。
통과등온열압축시험획득Inconel625합금재변형온도위1000~1200℃,응변속솔위1~80S^-1조건하적진응력-응변곡선,이용가공경화솔,결합lnθ-ε곡선상적괴점판거급-δ(1nθ)/δε-ε곡선상적최소치,래연구Inconel625합금동태재결정적림계조건。결과표명,재해실험조건하,Inconel625합금적lnθε곡선균출현괴점특정,대응적-δ(lnθ)/δε-ε곡선출현최소치,해최소치처대응적응변즉위림계응변;림계응변수응변속솔적증대화변형온도적강저이증가,병차림계응변화봉치응변지간유일정적관계,즉εc=0.69εp;동태재결정시림계응변적예측모형가이표시위εc=4.41×10^-4Z^0.14261。
Hot compression tests of Inconel 625 alloy were conducted at deformation temperature range of 1 000- 200 ℃ and strain rates of 1-80 s^-1 to obtain true stress-true strain curves. The critical conditions of dynamic recrystallization for In- conel 625 alloy were studied by using the work hardening rate θ, combined with the inflection point criterion of in θ-ε curves and the minimum value of -δ(ln θ)/δε-ε curves. The results indicate that the in θ-ε curve of Inconel 625 alloy presents the inflection point, and a minimum value of -δ(In θ)/δε-ε curve appears, which means the critical strain εc. The critical strain increases with the strain rate increasing and the temperature decreasing. And there is a relationship between the critical strain εc and peak strain ε, i. e. εc = 0.69%. The predicting model of critical strain is described as εc = 4.41 × 10^-4 Z^0.142.61