电力系统自动化
電力繫統自動化
전력계통자동화
AUTOMATION OF ELECTRIC POWER SYSTEMS
2011年
17期
14-19
,共6页
王成福%梁军%张利%牛远方%贠志皓%韩学山
王成福%樑軍%張利%牛遠方%贠誌皓%韓學山
왕성복%량군%장리%우원방%원지호%한학산
风力发电%预测功率%分级处理%机会约束规划%粒子群算法
風力髮電%預測功率%分級處理%機會約束規劃%粒子群算法
풍력발전%예측공솔%분급처리%궤회약속규화%입자군산법
wind power%predictive power%classified treatment%chance constrained programming%particle swarm algorithm
提高现有风电功率预测精度往往难度大、经济性差,而电网调度、风电控制则需要准确的功率曲线。为此,从分析功率预测结果角度提出风电功率分级处理思想,以减少预测误差对相关决策的影响。该分级思想以预测功率为基础,考虑预测误差分布影响,利用机会约束规划方法建立基于预测功率可信度水平的分级模型,将预测功率划分为基荷出力、次级出力及高频出力3个部分。分级处理可在保证最大化利用风功率前提下,区分预测数据中不同可信度水平分量,以此为电网调度、风电功率控制提供决策依据,从而降低决策风险。结合策略迭代、粒子群算法对分级模型进行求解,以某风电场24h数据为例进行模拟分级,所得结果验证了分级思想的可行性、有效性。
提高現有風電功率預測精度往往難度大、經濟性差,而電網調度、風電控製則需要準確的功率麯線。為此,從分析功率預測結果角度提齣風電功率分級處理思想,以減少預測誤差對相關決策的影響。該分級思想以預測功率為基礎,攷慮預測誤差分佈影響,利用機會約束規劃方法建立基于預測功率可信度水平的分級模型,將預測功率劃分為基荷齣力、次級齣力及高頻齣力3箇部分。分級處理可在保證最大化利用風功率前提下,區分預測數據中不同可信度水平分量,以此為電網調度、風電功率控製提供決策依據,從而降低決策風險。結閤策略迭代、粒子群算法對分級模型進行求解,以某風電場24h數據為例進行模擬分級,所得結果驗證瞭分級思想的可行性、有效性。
제고현유풍전공솔예측정도왕왕난도대、경제성차,이전망조도、풍전공제칙수요준학적공솔곡선。위차,종분석공솔예측결과각도제출풍전공솔분급처리사상,이감소예측오차대상관결책적영향。해분급사상이예측공솔위기출,고필예측오차분포영향,이용궤회약속규화방법건립기우예측공솔가신도수평적분급모형,장예측공솔화분위기하출력、차급출력급고빈출력3개부분。분급처리가재보증최대화이용풍공솔전제하,구분예측수거중불동가신도수평분량,이차위전망조도、풍전공솔공제제공결책의거,종이강저결책풍험。결합책략질대、입자군산법대분급모형진행구해,이모풍전장24h수거위례진행모의분급,소득결과험증료분급사상적가행성、유효성。
Improving the accuracy of current wind power prediction is very difficult and uneconomic,but power system dispatching and wind power control require accurate power curve.A novel method for classified treatment of wind farms active power using forecasting results is presented,which can reduce the influence of prediction error on the decision.The new method is based on predictive power.Considering the influence of predictive error distribution,a classified mode based on the reliability of predictive power is founded using chance constrained programming method,and predictive power is classified into three types: base load output,suboptimal output and high-frequency output.With the prerequisite of ensuring maximum use of wind power output,the classified treatment can distinguish different reliability components,supply decision basis for power dispatching and wind power control,and reduce the decision risk effectively.The policy iteration and particle swarm algorithm are used to solve the model,and the classified treatment is simulated by 24 h data of actual wind farms.The results verify the feasibility and effectiveness of the method.