光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2010年
4期
949-952
,共4页
成忠%张立庆%刘赫扬%诸爱士
成忠%張立慶%劉赫颺%諸愛士
성충%장립경%류혁양%제애사
连续投影算法%偏最小二乘%波长选择%近红外光谱%定量分析%小麦
連續投影算法%偏最小二乘%波長選擇%近紅外光譜%定量分析%小麥
련속투영산법%편최소이승%파장선택%근홍외광보%정량분석%소맥
Successive projections algorithm%Partial least square%Wavelength selection%Near-infrared spectroscopy%Quantitative analysis%Wheat
采用全谱建立多元校正模型时,通常计算鼍大,模型不够稳健,而且模型的预测精度往往也不能达到最优.文章介绍一种新的波长选择方法:采用连续投影算法(successive projiections algorithin),并将其集成偏最小二乘(partial least squares)多变量校正技术构成SPA-PLS方法,用于谷物小麦近红外光谱波长优化选择及其与水分含量的定量分析.结果表明:在经SPA算法后,光谱波数可削减97.72%,后继的定量校正模型结构得到显著简化,模型的稳健性也大大增强;同时,被选取的波长物理意义明确,模型的解释能力增强,而模型的预测性能也与GA-PLS方法相当.
採用全譜建立多元校正模型時,通常計算鼉大,模型不夠穩健,而且模型的預測精度往往也不能達到最優.文章介紹一種新的波長選擇方法:採用連續投影算法(successive projiections algorithin),併將其集成偏最小二乘(partial least squares)多變量校正技術構成SPA-PLS方法,用于穀物小麥近紅外光譜波長優化選擇及其與水分含量的定量分析.結果錶明:在經SPA算法後,光譜波數可削減97.72%,後繼的定量校正模型結構得到顯著簡化,模型的穩健性也大大增彊;同時,被選取的波長物理意義明確,模型的解釋能力增彊,而模型的預測性能也與GA-PLS方法相噹.
채용전보건립다원교정모형시,통상계산타대,모형불구은건,이차모형적예측정도왕왕야불능체도최우.문장개소일충신적파장선택방법:채용련속투영산법(successive projiections algorithin),병장기집성편최소이승(partial least squares)다변량교정기술구성SPA-PLS방법,용우곡물소맥근홍외광보파장우화선택급기여수분함량적정량분석.결과표명:재경SPA산법후,광보파수가삭감97.72%,후계적정량교정모형결구득도현저간화,모형적은건성야대대증강;동시,피선취적파장물리의의명학,모형적해석능력증강,이모형적예측성능야여GA-PLS방법상당.
Successive projections algorithm combined with partial least squares regression, termed as SPA-PLS approach, was implemented as a novel variable selection approach to multivariate calibration. The proposed approach was applied to near-infra-red reflectance data for analyzing moisture in wheat. The number of variables selected from 701 spectral variables was reduced to 16 by SPA, and the root mean squared error of prediction set (RMSEP) of the corresponding partial least squares regression models was decreased to 0. 205 5% as well The result indicates that the SPA-PLS approach by performing SPA prior to calibra-tion not only can improve the model accuracy, but also decreases the number of spectral variables, so its resulting model becomes more concise. Moreover, as compared with genetic algorithm for wavelength selection, SPA is a deterministic search technique whose results are reproducible and it is more robust with respect to the choice of the validation set.