基础医学与临床
基礎醫學與臨床
기출의학여림상
BASIC MEDICAL SCIENCES AND CLINICS
2010年
3期
263-267
,共5页
何磊%程亚伟%廖萍%胡衡%金亚明%李福凤%王文静%钱鹏%王忆勤
何磊%程亞偉%廖萍%鬍衡%金亞明%李福鳳%王文靜%錢鵬%王憶勤
하뢰%정아위%료평%호형%금아명%리복봉%왕문정%전붕%왕억근
慢性肾功能衰竭%CM10蛋白芯片%血清
慢性腎功能衰竭%CM10蛋白芯片%血清
만성신공능쇠갈%CM10단백심편%혈청
chronic renal failure%CM10 protein chip%serum
目的 通过比较慢性肾衰(CRF)患者与正常人血清蛋白表达谱的差异,筛选血清蛋白标志物并建立诊断模型,探讨其在慢性肾衰血清学诊断中的意义.方法 收集62例CRF患者和28例正常人的血清,经表面增强激光解析离子化飞行时间质谱(SELDI-TOF-MS)检验并筛选血清蛋白标志物.经生物信息学分析建立预测模型并进行验证.结果 在质荷比(m/z)1 500~30 000范围内,检测到51个有效蛋白峰,发现有19个峰有显著差异(P<0.001),其中18个峰呈低表达,1个峰呈高表达;且CRF组和正常组的聚类性质明显不同;组内样本彼此靠近,组间样本彼此分开.构建的"慢性肾衰组-正常组"诊断决策树模型,预测正确率为87.8%,灵敏度为87.1%,特异度为89.3%.结论 该决策树模型能对慢性肾衰做出较为准确的预测判断,为慢性肾衰的临床早期发现提供一定的实验依据.
目的 通過比較慢性腎衰(CRF)患者與正常人血清蛋白錶達譜的差異,篩選血清蛋白標誌物併建立診斷模型,探討其在慢性腎衰血清學診斷中的意義.方法 收集62例CRF患者和28例正常人的血清,經錶麵增彊激光解析離子化飛行時間質譜(SELDI-TOF-MS)檢驗併篩選血清蛋白標誌物.經生物信息學分析建立預測模型併進行驗證.結果 在質荷比(m/z)1 500~30 000範圍內,檢測到51箇有效蛋白峰,髮現有19箇峰有顯著差異(P<0.001),其中18箇峰呈低錶達,1箇峰呈高錶達;且CRF組和正常組的聚類性質明顯不同;組內樣本彼此靠近,組間樣本彼此分開.構建的"慢性腎衰組-正常組"診斷決策樹模型,預測正確率為87.8%,靈敏度為87.1%,特異度為89.3%.結論 該決策樹模型能對慢性腎衰做齣較為準確的預測判斷,為慢性腎衰的臨床早期髮現提供一定的實驗依據.
목적 통과비교만성신쇠(CRF)환자여정상인혈청단백표체보적차이,사선혈청단백표지물병건립진단모형,탐토기재만성신쇠혈청학진단중적의의.방법 수집62례CRF환자화28례정상인적혈청,경표면증강격광해석리자화비행시간질보(SELDI-TOF-MS)검험병사선혈청단백표지물.경생물신식학분석건립예측모형병진행험증.결과 재질하비(m/z)1 500~30 000범위내,검측도51개유효단백봉,발현유19개봉유현저차이(P<0.001),기중18개봉정저표체,1개봉정고표체;차CRF조화정상조적취류성질명현불동;조내양본피차고근,조간양본피차분개.구건적"만성신쇠조-정상조"진단결책수모형,예측정학솔위87.8%,령민도위87.1%,특이도위89.3%.결론 해결책수모형능대만성신쇠주출교위준학적예측판단,위만성신쇠적림상조기발현제공일정적실험의거.
Objective To Screen serum protein markers related to CRF and establish a diagnosis model,exploring and discussing its significance in serodiagnosis by comparing differences of serum protein spectrum expression between patients with chronic renal failure (CRF) and control group.Methods The trial included 62 CRF patients and 28 control ones.Serum samples were tested by surface enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS).The data were analyzed to screen serum proteomic biomarkers.By bioinformatics analysis,decision classification tree models were to be established and tested.Results A total of 19 effective protein peaks were significantly different between CRF and normal control (P<0.001) at m/z range of 1 500 to 30 000,among which 18 showed low expression and 1 showed high expression in CRF.CRF and normal control were obviously different in the clustering;By bioinformatics analysis,a "CRF-normal controls" of the diagnostic decision tree model was developed,which was 87.8% in with prediction accuracy rate of 87.8% sensitivity of 87.1% and a specificity of 89.3%.Condusion Diagnostic decision tree model provides a more accurate prediction and solid experimental evidence for early clinical diagnosis.