西安交通大学学报
西安交通大學學報
서안교통대학학보
JOURNAL OF XI'AN JIAOTONG UNIVERSITY
2001年
4期
421-424
,共4页
Navier-Stokes方程%非退化转向点%谱Galerkin逼近
Navier-Stokes方程%非退化轉嚮點%譜Galerkin逼近
Navier-Stokes방정%비퇴화전향점%보Galerkin핍근
利用非退化转向点的扩充系统,证明了如下结论:设(λ0,u0)是Navier-Stokes方程的非退化转向点,则存在正整数m1,当m大于m1时,在(λ0,u0)的某个邻域内,谱Galerkin逼近方程存在惟一解,且为谱Galerkin逼近方程的非退化转向点,并给出了L2范数和H1范数下的误差估计.
利用非退化轉嚮點的擴充繫統,證明瞭如下結論:設(λ0,u0)是Navier-Stokes方程的非退化轉嚮點,則存在正整數m1,噹m大于m1時,在(λ0,u0)的某箇鄰域內,譜Galerkin逼近方程存在惟一解,且為譜Galerkin逼近方程的非退化轉嚮點,併給齣瞭L2範數和H1範數下的誤差估計.
이용비퇴화전향점적확충계통,증명료여하결론:설(λ0,u0)시Navier-Stokes방정적비퇴화전향점,칙존재정정수m1,당m대우m1시,재(λ0,u0)적모개린역내,보Galerkin핍근방정존재유일해,차위보Galerkin핍근방정적비퇴화전향점,병급출료L2범수화H1범수하적오차고계.
Using an extended system of the nondegenerate turning point, the following conclusion is proved: If (λ0,u0) is a nondegenerate turning point of the Navier-Stokes equations, then there exists an integer m1, such that for each m greater than m1, the spectral Galerkin approximation equations have an unique solution in some neighborhood of (λ0,u0), which is a nondegenerate turning point of the Galerkin approximation equations. The error estemation under various norms is given.