计算机学报
計算機學報
계산궤학보
CHINESE JOURNAL OF COMPUTERS
2001年
4期
337-346
,共10页
图像分析%形态滤波器%遗传算法%优化计算
圖像分析%形態濾波器%遺傳算法%優化計算
도상분석%형태려파기%유전산법%우화계산
提出了一种实现形态滤波器参数优化设计的遗传学习算法(Genetic Training Algorithm for Morphological Fitters, GTAMF).采用新的交叉与变异算子——曲面体交叉与主从式变异,通过优化搜索全局以获得滤波性和时效性兼优的形态滤波器参数.实验结果表明该方法设计方便,实用性强且易于推广,对提高形态滤波性能效果明显.分析表明,形态滤波器可分解为形态学运算和结构元选择两个基本问题,形态学运算的规则已由定义本身而确定,于是形态滤波器的最终滤波性能就仅仅取决于结构元的选择.通过自适应优化训练使结构元具有图像目标的形态结构特征,从而赋予结构元特定的知识,使形态滤波过程融入特有的智能,以实现对复杂变化的图像具有良好的滤波性能和稳健的适应能力.
提齣瞭一種實現形態濾波器參數優化設計的遺傳學習算法(Genetic Training Algorithm for Morphological Fitters, GTAMF).採用新的交扠與變異算子——麯麵體交扠與主從式變異,通過優化搜索全跼以穫得濾波性和時效性兼優的形態濾波器參數.實驗結果錶明該方法設計方便,實用性彊且易于推廣,對提高形態濾波性能效果明顯.分析錶明,形態濾波器可分解為形態學運算和結構元選擇兩箇基本問題,形態學運算的規則已由定義本身而確定,于是形態濾波器的最終濾波性能就僅僅取決于結構元的選擇.通過自適應優化訓練使結構元具有圖像目標的形態結構特徵,從而賦予結構元特定的知識,使形態濾波過程融入特有的智能,以實現對複雜變化的圖像具有良好的濾波性能和穩健的適應能力.
제출료일충실현형태려파기삼수우화설계적유전학습산법(Genetic Training Algorithm for Morphological Fitters, GTAMF).채용신적교차여변이산자——곡면체교차여주종식변이,통과우화수색전국이획득려파성화시효성겸우적형태려파기삼수.실험결과표명해방법설계방편,실용성강차역우추엄,대제고형태려파성능효과명현.분석표명,형태려파기가분해위형태학운산화결구원선택량개기본문제,형태학운산적규칙이유정의본신이학정,우시형태려파기적최종려파성능취부부취결우결구원적선택.통과자괄응우화훈련사결구원구유도상목표적형태결구특정,종이부여결구원특정적지식,사형태려파과정융입특유적지능,이실현대복잡변화적도상구유량호적려파성능화은건적괄응능력.
A novel method for optimal morphological filtering parameters, namely the genetic training algorithm for morphological filters (GTAMF) is presented in this paper. GTAMF adopts new crossover and mutation operators called the curved cylinder crossover and master-slave mutation, to achieve optimal filtering parameters in a global searching. Experimental results show that this method is practical, easy to extend, and improves the performances of morphological filters. The operation of a morphological filter can be divided into two basic problems that include morphological operation and structuring element (SE) selection. The rules for morphological operations are predefined so the filter's properties depend merely on the selection of SE. By means of adaptive optimizing training, structuring elements possess the shape and structural characteristics of image targets, namely some information can be obtained by SE. Morphological filters formed in this way become intelligent and can provide good filtering results and robust adaptability to image targets with clutter background.