计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2010年
2期
135-137,169
,共4页
说话人辨识%粒子群优化算法%速度进化因子%极值扰动
說話人辨識%粒子群優化算法%速度進化因子%極值擾動
설화인변식%입자군우화산법%속도진화인자%겁치우동
speaker identification%Particle Swam Optimization(PSO)%evolution speed factor%extremum disturbance
针对PSO算法容易陷于局部极值的缺点,提出了一种改进的PSO优化算法(IPSO).该算法根据粒子进化速度对粒子个体极值进行自适应扰动,使粒子及时跳出局部hot点而继续优化,从而扩大粒子搜索范围.改进后的PSO算法加快了收敛速度,能够很好地调整算法的全局与局部搜索能力之间的平衡.同时,给出了应用IPSO算法训练支持向量机的方法,并将其应用于说话人辨识.改进后的PSO可以使SVM用较少的SV取得最优分类面,从而减少SVM的训练量,提高了说话人辨识速度.
針對PSO算法容易陷于跼部極值的缺點,提齣瞭一種改進的PSO優化算法(IPSO).該算法根據粒子進化速度對粒子箇體極值進行自適應擾動,使粒子及時跳齣跼部hot點而繼續優化,從而擴大粒子搜索範圍.改進後的PSO算法加快瞭收斂速度,能夠很好地調整算法的全跼與跼部搜索能力之間的平衡.同時,給齣瞭應用IPSO算法訓練支持嚮量機的方法,併將其應用于說話人辨識.改進後的PSO可以使SVM用較少的SV取得最優分類麵,從而減少SVM的訓練量,提高瞭說話人辨識速度.
침대PSO산법용역함우국부겁치적결점,제출료일충개진적PSO우화산법(IPSO).해산법근거입자진화속도대입자개체겁치진행자괄응우동,사입자급시도출국부hot점이계속우화,종이확대입자수색범위.개진후적PSO산법가쾌료수렴속도,능구흔호지조정산법적전국여국부수색능력지간적평형.동시,급출료응용IPSO산법훈련지지향량궤적방법,병장기응용우설화인변식.개진후적PSO가이사SVM용교소적SV취득최우분류면,종이감소SVM적훈련량,제고료설화인변식속도.
Aiming at the shortcoming of Particle Swam Optimization(PSO) which is easily relapsing into local extremum,an improved PSO is proposed in this paper.This approach applies the evolution speed factor as the Trigger conditions to stochastically disturb the local optimal solution.The improved PSO algorithm can not only improve extraordinarily the convergence velocity in the evolutionary optimization, but also can adjust the balance between global and local exploration suitably .Then a speaker identification approach using this improved algorithm to train SVM is presented.The SVM can receive the optimal hyper plane with less support vectors by the improved PSO,and then the training samples are reduced and the identification speed is improved.