仪器仪表学报
儀器儀錶學報
의기의표학보
CHINESE JOURNAL OF SCIENTIFIC INSTRUMENT
2009年
10期
2070-2075
,共6页
李佐胜%姚建刚%杨迎建%刘云鹏%李文杰
李佐勝%姚建剛%楊迎建%劉雲鵬%李文傑
리좌성%요건강%양영건%류운붕%리문걸
双树复小波变换%绝缘子红外热像%噪声方差估计%MAP估计%图像去噪
雙樹複小波變換%絕緣子紅外熱像%譟聲方差估計%MAP估計%圖像去譟
쌍수복소파변환%절연자홍외열상%조성방차고계%MAP고계%도상거조
DT-CWT%insulator infrared thermal image%noise variance estimation%MAP estimation%image denoising
为了从强白噪声干扰的红外热像中提取真实的绝缘子盘面温度场信息,提出一种基于MAP估计的复小波域局部自适应去噪方法.首次证实了绝缘子红外热像双树复小波变换(DT-CWT)系数服从拉普拉斯分布,并对不同滤波器组采用各自最精细分解层子带系数估计噪声方差,利用待估计点圆形邻域系数估计信号方差,且随分辨率变化调整圆形邻域半径,使得MAP估计的无噪声系数更为准确,提高了去噪图像质量.实验结果表明,该方法比传统的Wiener滤波法、基于离散小波变换和DT-CWT的贝叶斯阈值去噪方法具有更高的信噪比,在有效去除图像噪声的同时,图像细节信息保留更完好.
為瞭從彊白譟聲榦擾的紅外熱像中提取真實的絕緣子盤麵溫度場信息,提齣一種基于MAP估計的複小波域跼部自適應去譟方法.首次證實瞭絕緣子紅外熱像雙樹複小波變換(DT-CWT)繫數服從拉普拉斯分佈,併對不同濾波器組採用各自最精細分解層子帶繫數估計譟聲方差,利用待估計點圓形鄰域繫數估計信號方差,且隨分辨率變化調整圓形鄰域半徑,使得MAP估計的無譟聲繫數更為準確,提高瞭去譟圖像質量.實驗結果錶明,該方法比傳統的Wiener濾波法、基于離散小波變換和DT-CWT的貝葉斯閾值去譟方法具有更高的信譟比,在有效去除圖像譟聲的同時,圖像細節信息保留更完好.
위료종강백조성간우적홍외열상중제취진실적절연자반면온도장신식,제출일충기우MAP고계적복소파역국부자괄응거조방법.수차증실료절연자홍외열상쌍수복소파변환(DT-CWT)계수복종랍보랍사분포,병대불동려파기조채용각자최정세분해층자대계수고계조성방차,이용대고계점원형린역계수고계신호방차,차수분변솔변화조정원형린역반경,사득MAP고계적무조성계수경위준학,제고료거조도상질량.실험결과표명,해방법비전통적Wiener려파법、기우리산소파변환화DT-CWT적패협사역치거조방법구유경고적신조비,재유효거제도상조성적동시,도상세절신식보류경완호.
In order to gain the real temperature distribution of insulator surface from infrared thermal image that is strongly interfered by white-noise, a complex wavelet-domain local adaptive denoising method based on maximum a posteriori (MAP) estimation is developed. It is confirmed for the first time that the dual tree complex wavelet transform (DT-CWT) coefficients of insulator infrared thermal image obey Laplacian distribution. The authors utilize the finest scaling sub-band coefficients of different filter banks to estimate their respective noise variances, and compute the signal variance of the coefficient using neighboring coefficients within a circular window whose radius varies with resolution, so noise-free coefficients are more accurately estimated by MAP estimation and the quality of the denoised image is improved. Experimental results demonstrate that the proposed method gets higher signal-to-noise rate (SNR), de-noises more effectively and preserves more detailed information of the original image than traditional Wiener filtering method, the adaptive Bayesian threshold methods based on discrete wavelet transform and DT-CWT.