高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2010年
1期
196-204
,共9页
贺恒鑫%何俊佳%钱冠军%谢施君%董曼玲%姚帅%谢耀恒
賀恆鑫%何俊佳%錢冠軍%謝施君%董曼玲%姚帥%謝耀恆
하항흠%하준가%전관군%사시군%동만령%요수%사요항
特高压交流%输电线路%屏蔽失效%下行先导通道%连续迎面先导%分析模型
特高壓交流%輸電線路%屏蔽失效%下行先導通道%連續迎麵先導%分析模型
특고압교류%수전선로%병폐실효%하행선도통도%련속영면선도%분석모형
UHVAC%transmission line%shielding failure%downward leader channel%continuous upward leader%analysis model
绕击是引起超高压、特高压输电线路雷击跳闸的主要原因.将低电压等级输电线路绕击防护经验直接外推至更高电压等级时具有一定的局限性,可能导致新建线路的绕击耐雷性能显著低于预期值.基于先导发展的绕击分析模型细致地考虑了影响雷击发展物理过程各种因素的影响,较传统工程化分析方法更适用于新建电压等级线路的绕击性能评估.但由于对雷击物理过程和长间隙放电机理认识的不足,不同时期不同学者对雷击过程描述所采用的模型和方法不尽相同,若将现有学者所提出的绕击分析模型直接用于工程中,不同分析模型所得结果差异较大.为此,通过对比现有的雷电观测资料,认为Cooray提出的下行先导通道模型与最新的雷电观测结果比较相符;对迎面先导起始工程判据的对比分析结果表明,当导线对地高度<10.0 m时,Rizk感应电压法和临界电晕半径法计算得的先导起始电压结果一致,外推至实际导线对地高度时,Rizk感应电压法的计算结果与长间隙放电理论相违背;同时依据长间隙放电理论,提出了下行先导和迎面先导的相对速度比近似等于迎面先导通道单位长度电压降与导线感应电压增量之比的迎面先导持续发展条件,建立了基于Schwarz-Christoffel变换的能考虑任意地形的2维特高压输电线路雷电屏蔽分析模型;该分析模型解释了传统先导发展模型无法解释的特高压输电线路ZMP2和ZBS2型杆塔的中相屏蔽问题.计算结果表明,在典型的平原、斜坡和山顶地形下,ZMP2和ZBS2型杆塔的绕击跳闸率低于设计预期值0.1次/(100 km·a).
繞擊是引起超高壓、特高壓輸電線路雷擊跳閘的主要原因.將低電壓等級輸電線路繞擊防護經驗直接外推至更高電壓等級時具有一定的跼限性,可能導緻新建線路的繞擊耐雷性能顯著低于預期值.基于先導髮展的繞擊分析模型細緻地攷慮瞭影響雷擊髮展物理過程各種因素的影響,較傳統工程化分析方法更適用于新建電壓等級線路的繞擊性能評估.但由于對雷擊物理過程和長間隙放電機理認識的不足,不同時期不同學者對雷擊過程描述所採用的模型和方法不儘相同,若將現有學者所提齣的繞擊分析模型直接用于工程中,不同分析模型所得結果差異較大.為此,通過對比現有的雷電觀測資料,認為Cooray提齣的下行先導通道模型與最新的雷電觀測結果比較相符;對迎麵先導起始工程判據的對比分析結果錶明,噹導線對地高度<10.0 m時,Rizk感應電壓法和臨界電暈半徑法計算得的先導起始電壓結果一緻,外推至實際導線對地高度時,Rizk感應電壓法的計算結果與長間隙放電理論相違揹;同時依據長間隙放電理論,提齣瞭下行先導和迎麵先導的相對速度比近似等于迎麵先導通道單位長度電壓降與導線感應電壓增量之比的迎麵先導持續髮展條件,建立瞭基于Schwarz-Christoffel變換的能攷慮任意地形的2維特高壓輸電線路雷電屏蔽分析模型;該分析模型解釋瞭傳統先導髮展模型無法解釋的特高壓輸電線路ZMP2和ZBS2型桿塔的中相屏蔽問題.計算結果錶明,在典型的平原、斜坡和山頂地形下,ZMP2和ZBS2型桿塔的繞擊跳閘率低于設計預期值0.1次/(100 km·a).
요격시인기초고압、특고압수전선로뢰격도갑적주요원인.장저전압등급수전선로요격방호경험직접외추지경고전압등급시구유일정적국한성,가능도치신건선로적요격내뢰성능현저저우예기치.기우선도발전적요격분석모형세치지고필료영향뢰격발전물리과정각충인소적영향,교전통공정화분석방법경괄용우신건전압등급선로적요격성능평고.단유우대뢰격물리과정화장간극방전궤리인식적불족,불동시기불동학자대뢰격과정묘술소채용적모형화방법불진상동,약장현유학자소제출적요격분석모형직접용우공정중,불동분석모형소득결과차이교대.위차,통과대비현유적뇌전관측자료,인위Cooray제출적하행선도통도모형여최신적뇌전관측결과비교상부;대영면선도기시공정판거적대비분석결과표명,당도선대지고도<10.0 m시,Rizk감응전압법화림계전훈반경법계산득적선도기시전압결과일치,외추지실제도선대지고도시,Rizk감응전압법적계산결과여장간극방전이론상위배;동시의거장간극방전이론,제출료하행선도화영면선도적상대속도비근사등우영면선도통도단위장도전압강여도선감응전압증량지비적영면선도지속발전조건,건립료기우Schwarz-Christoffel변환적능고필임의지형적2유특고압수전선로뇌전병폐분석모형;해분석모형해석료전통선도발전모형무법해석적특고압수전선로ZMP2화ZBS2형간탑적중상병폐문제.계산결과표명,재전형적평원、사파화산정지형하,ZMP2화ZBS2형간탑적요격도갑솔저우설계예기치0.1차/(100 km·a).
The shielding failure analysis model by means of the leader progression model takes care of the involved phenomena mainly the propagation of the leaders and the inception and propagation of upward leader from earthed structures,which is more suitable for the lightning shielding performance assessment of UHV transmission line.But the lack of the physics background of the lightning discharge and the long air gap discharge,the leader progression models proposed by different scholars differ from each other.Consequently,the recent lightning observation resuits are analyzed,it is concluded that the downward leader channel model proposed by Cooray is consistent with the lightning observation result.The contrast analysis result of upward leader inception criterion indicates that the Rizk criterion and the critical corona radius conception are equivalent when the gap length is<10.0 m.The calculation result of Rizk criterion conflicts to the test result of laboratory long air gap discharge when gap length extrapolated to the actual transmission line.A new continuous upward connecting leader model based on the mechnism of long air gap discharge is proposed in this paper,the velocity ratio between the downward leader and the upward connecting leader can be approximately equal to the ratio between voltage drop per unite length of upward leader and the induced voltage increscent of conductor,a new two dimension lightning shielding failure analysis model for UHV transmission line is established which can take into account of the arbitrary terrain by using Schwarz-Christoffel transform.The lightning shielding performance of middle phase is clarified by employing this model.The lightning shielding performance of ZMP2 and ZBS2 on typical plain,slope and mountaintop area are calculated,The calculated results indicate that the lightning shielding failure flashover rate is less than the designed value 0.1 flashes/(100 km·a).